Loading…
It's Complicated: A Big Data Approach to Exploring Planetesimal Evolution in the Presence of Jovian Planets
Previous studies have suggested that the scattered disk is populated by planetesimals that once orbited in the reservoirs between the Jovian planets. Other studies have concluded that the source region for the Centaurs and Jupiter family comets (JFCs) is the scattered disk. Still other studies have...
Saved in:
Published in: | The Astronomical journal 2018-11, Vol.156 (5), p.232 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Previous studies have suggested that the scattered disk is populated by planetesimals that once orbited in the reservoirs between the Jovian planets. Other studies have concluded that the source region for the Centaurs and Jupiter family comets (JFCs) is the scattered disk. Still other studies have suggested dynamical links between Centaurs and JFCs. The overarching goal of this study is to build upon our previous work and, using data mining techniques derived from big data applications, explore a database of close planet/planetesimal approaches in order to both examine these claims and demonstrate how complicated the trajectories of planetesimals wending between the Jovian planets can be-as they are subjected to impulsive alterations by close planetary encounters and resonant effects. Our results show that Centaurs, JFCs, and scattered disk objects are not dynamically distinct populations, and the paths planetesimals take over their lifetimes can be extremely complex. An understanding of this complexity offers solutions to other outstanding questions about the current solar system architecture. |
---|---|
ISSN: | 0004-6256 1538-3881 |
DOI: | 10.3847/1538-3881/aae095 |