Loading…
Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure
UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on...
Saved in:
Published in: | The Astrophysical journal 2018-05, Vol.859 (1), p.68 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c416t-6df67e78afcf898cd700f6e6ed8e1b094e8d5b116ff820e37bcd1c9236a5a0ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c416t-6df67e78afcf898cd700f6e6ed8e1b094e8d5b116ff820e37bcd1c9236a5a0ab3 |
container_end_page | |
container_issue | 1 |
container_start_page | 68 |
container_title | The Astrophysical journal |
container_volume | 859 |
creator | Kim, Jeong-Gyu Kim, Woong-Tae Ostriker, Eve C. |
description | UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, 0, such that the SFE increases from 4% to 51% as 0 increases from 13 to . Cloud destruction occurs within 2-10 Myr after the onset of radiation feedback, or within 0.6-4.1 freefall times (increasing with 0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to , and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations. |
doi_str_mv | 10.3847/1538-4357/aabe27 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_aabe27</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365756350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-6df67e78afcf898cd700f6e6ed8e1b094e8d5b116ff820e37bcd1c9236a5a0ab3</originalsourceid><addsrcrecordid>eNp1kEFLw0AUhBdRsFbvHhe8mnbTJLvJUaqthRaLWvEWXrJvdWuarbuJUP-F_9jEiHrx9HjDNzMwhJz6bBDEoRj6URB7YRCJIUCGI7FHej_SPukxxkKPB-LxkBw5t27fUZL0yMfCSCx0-URXD_QWpIZKm5JOEGUG-QtV1mzoApzTb0jvKrBuQGezAb3UbovWQUGN-tI9ZeymzZlqKCu6MAXmdQGWjgtTS0ezHV0-m8o06fq9K4FS_qlcWnSutnhMDhQUDk--b5-sJlf342tvfjOdjS_mXh76vPK4VFygiEHlKk7iXArGFEeOMkY_Y0mIsYwy3-dKxSOGgchy6efJKOAQAYMs6JOzLndrzWuNrkrXprZlU5k2UCQiHkSsoVhH5dY4Z1GlW6s3YHepz9J2-LRdOW1XTrvhG8t5Z9Fm-5v5L_4JR5WHMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365756350</pqid></control><display><type>article</type><title>Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Jeong-Gyu ; Kim, Woong-Tae ; Ostriker, Eve C.</creator><creatorcontrib>Kim, Jeong-Gyu ; Kim, Woong-Tae ; Ostriker, Eve C.</creatorcontrib><description>UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, 0, such that the SFE increases from 4% to 51% as 0 increases from 13 to . Cloud destruction occurs within 2-10 Myr after the onset of radiation feedback, or within 0.6-4.1 freefall times (increasing with 0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to , and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aabe27</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Cloud dispersal ; Cloud formation ; Clouds ; Computer simulation ; Density ; Dispersal ; Dispersion ; Disruption ; Ejection ; Feedback ; Ionization ; ISM: clouds ; ISM: kinematics and dynamics ; Massive stars ; Mathematical models ; methods: numerical ; Molecular clouds ; Numerical simulations ; Photoionization ; Radiation ; Radiation pressure ; radiation: dynamics ; regions ; Star & galaxy formation ; Star clusters ; Star formation ; Stars & galaxies ; stars: formation ; Stellar evolution ; Ultraviolet radiation</subject><ispartof>The Astrophysical journal, 2018-05, Vol.859 (1), p.68</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing May 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-6df67e78afcf898cd700f6e6ed8e1b094e8d5b116ff820e37bcd1c9236a5a0ab3</citedby><cites>FETCH-LOGICAL-c416t-6df67e78afcf898cd700f6e6ed8e1b094e8d5b116ff820e37bcd1c9236a5a0ab3</cites><orcidid>0000-0001-6228-8634 ; 0000-0003-4625-229X ; 0000-0002-0509-9113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Jeong-Gyu</creatorcontrib><creatorcontrib>Kim, Woong-Tae</creatorcontrib><creatorcontrib>Ostriker, Eve C.</creatorcontrib><title>Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, 0, such that the SFE increases from 4% to 51% as 0 increases from 13 to . Cloud destruction occurs within 2-10 Myr after the onset of radiation feedback, or within 0.6-4.1 freefall times (increasing with 0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to , and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.</description><subject>Astrophysics</subject><subject>Cloud dispersal</subject><subject>Cloud formation</subject><subject>Clouds</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Dispersal</subject><subject>Dispersion</subject><subject>Disruption</subject><subject>Ejection</subject><subject>Feedback</subject><subject>Ionization</subject><subject>ISM: clouds</subject><subject>ISM: kinematics and dynamics</subject><subject>Massive stars</subject><subject>Mathematical models</subject><subject>methods: numerical</subject><subject>Molecular clouds</subject><subject>Numerical simulations</subject><subject>Photoionization</subject><subject>Radiation</subject><subject>Radiation pressure</subject><subject>radiation: dynamics</subject><subject>regions</subject><subject>Star & galaxy formation</subject><subject>Star clusters</subject><subject>Star formation</subject><subject>Stars & galaxies</subject><subject>stars: formation</subject><subject>Stellar evolution</subject><subject>Ultraviolet radiation</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AUhBdRsFbvHhe8mnbTJLvJUaqthRaLWvEWXrJvdWuarbuJUP-F_9jEiHrx9HjDNzMwhJz6bBDEoRj6URB7YRCJIUCGI7FHej_SPukxxkKPB-LxkBw5t27fUZL0yMfCSCx0-URXD_QWpIZKm5JOEGUG-QtV1mzoApzTb0jvKrBuQGezAb3UbovWQUGN-tI9ZeymzZlqKCu6MAXmdQGWjgtTS0ezHV0-m8o06fq9K4FS_qlcWnSutnhMDhQUDk--b5-sJlf342tvfjOdjS_mXh76vPK4VFygiEHlKk7iXArGFEeOMkY_Y0mIsYwy3-dKxSOGgchy6efJKOAQAYMs6JOzLndrzWuNrkrXprZlU5k2UCQiHkSsoVhH5dY4Z1GlW6s3YHepz9J2-LRdOW1XTrvhG8t5Z9Fm-5v5L_4JR5WHMQ</recordid><startdate>20180520</startdate><enddate>20180520</enddate><creator>Kim, Jeong-Gyu</creator><creator>Kim, Woong-Tae</creator><creator>Ostriker, Eve C.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6228-8634</orcidid><orcidid>https://orcid.org/0000-0003-4625-229X</orcidid><orcidid>https://orcid.org/0000-0002-0509-9113</orcidid></search><sort><creationdate>20180520</creationdate><title>Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure</title><author>Kim, Jeong-Gyu ; Kim, Woong-Tae ; Ostriker, Eve C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-6df67e78afcf898cd700f6e6ed8e1b094e8d5b116ff820e37bcd1c9236a5a0ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astrophysics</topic><topic>Cloud dispersal</topic><topic>Cloud formation</topic><topic>Clouds</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Dispersal</topic><topic>Dispersion</topic><topic>Disruption</topic><topic>Ejection</topic><topic>Feedback</topic><topic>Ionization</topic><topic>ISM: clouds</topic><topic>ISM: kinematics and dynamics</topic><topic>Massive stars</topic><topic>Mathematical models</topic><topic>methods: numerical</topic><topic>Molecular clouds</topic><topic>Numerical simulations</topic><topic>Photoionization</topic><topic>Radiation</topic><topic>Radiation pressure</topic><topic>radiation: dynamics</topic><topic>regions</topic><topic>Star & galaxy formation</topic><topic>Star clusters</topic><topic>Star formation</topic><topic>Stars & galaxies</topic><topic>stars: formation</topic><topic>Stellar evolution</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jeong-Gyu</creatorcontrib><creatorcontrib>Kim, Woong-Tae</creatorcontrib><creatorcontrib>Ostriker, Eve C.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jeong-Gyu</au><au>Kim, Woong-Tae</au><au>Ostriker, Eve C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-05-20</date><risdate>2018</risdate><volume>859</volume><issue>1</issue><spage>68</spage><pages>68-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, 0, such that the SFE increases from 4% to 51% as 0 increases from 13 to . Cloud destruction occurs within 2-10 Myr after the onset of radiation feedback, or within 0.6-4.1 freefall times (increasing with 0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to , and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aabe27</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-6228-8634</orcidid><orcidid>https://orcid.org/0000-0003-4625-229X</orcidid><orcidid>https://orcid.org/0000-0002-0509-9113</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2018-05, Vol.859 (1), p.68 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_aabe27 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Astrophysics Cloud dispersal Cloud formation Clouds Computer simulation Density Dispersal Dispersion Disruption Ejection Feedback Ionization ISM: clouds ISM: kinematics and dynamics Massive stars Mathematical models methods: numerical Molecular clouds Numerical simulations Photoionization Radiation Radiation pressure radiation: dynamics regions Star & galaxy formation Star clusters Star formation Stars & galaxies stars: formation Stellar evolution Ultraviolet radiation |
title | Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20UV%20Radiation%20Feedback%20from%20Massive%20Stars.%20II.%20Dispersal%20of%20Star-forming%20Giant%20Molecular%20Clouds%20by%20Photoionization%20and%20Radiation%20Pressure&rft.jtitle=The%20Astrophysical%20journal&rft.au=Kim,%20Jeong-Gyu&rft.date=2018-05-20&rft.volume=859&rft.issue=1&rft.spage=68&rft.pages=68-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aabe27&rft_dat=%3Cproquest_cross%3E2365756350%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-6df67e78afcf898cd700f6e6ed8e1b094e8d5b116ff820e37bcd1c9236a5a0ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365756350&rft_id=info:pmid/&rfr_iscdi=true |