Loading…

Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure

UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2018-05, Vol.859 (1), p.68
Main Authors: Kim, Jeong-Gyu, Kim, Woong-Tae, Ostriker, Eve C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c416t-6df67e78afcf898cd700f6e6ed8e1b094e8d5b116ff820e37bcd1c9236a5a0ab3
cites cdi_FETCH-LOGICAL-c416t-6df67e78afcf898cd700f6e6ed8e1b094e8d5b116ff820e37bcd1c9236a5a0ab3
container_end_page
container_issue 1
container_start_page 68
container_title The Astrophysical journal
container_volume 859
creator Kim, Jeong-Gyu
Kim, Woong-Tae
Ostriker, Eve C.
description UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, 0, such that the SFE increases from 4% to 51% as 0 increases from 13 to . Cloud destruction occurs within 2-10 Myr after the onset of radiation feedback, or within 0.6-4.1 freefall times (increasing with 0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to , and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.
doi_str_mv 10.3847/1538-4357/aabe27
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_aabe27</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365756350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-6df67e78afcf898cd700f6e6ed8e1b094e8d5b116ff820e37bcd1c9236a5a0ab3</originalsourceid><addsrcrecordid>eNp1kEFLw0AUhBdRsFbvHhe8mnbTJLvJUaqthRaLWvEWXrJvdWuarbuJUP-F_9jEiHrx9HjDNzMwhJz6bBDEoRj6URB7YRCJIUCGI7FHej_SPukxxkKPB-LxkBw5t27fUZL0yMfCSCx0-URXD_QWpIZKm5JOEGUG-QtV1mzoApzTb0jvKrBuQGezAb3UbovWQUGN-tI9ZeymzZlqKCu6MAXmdQGWjgtTS0ezHV0-m8o06fq9K4FS_qlcWnSutnhMDhQUDk--b5-sJlf342tvfjOdjS_mXh76vPK4VFygiEHlKk7iXArGFEeOMkY_Y0mIsYwy3-dKxSOGgchy6efJKOAQAYMs6JOzLndrzWuNrkrXprZlU5k2UCQiHkSsoVhH5dY4Z1GlW6s3YHepz9J2-LRdOW1XTrvhG8t5Z9Fm-5v5L_4JR5WHMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365756350</pqid></control><display><type>article</type><title>Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Jeong-Gyu ; Kim, Woong-Tae ; Ostriker, Eve C.</creator><creatorcontrib>Kim, Jeong-Gyu ; Kim, Woong-Tae ; Ostriker, Eve C.</creatorcontrib><description>UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, 0, such that the SFE increases from 4% to 51% as 0 increases from 13 to . Cloud destruction occurs within 2-10 Myr after the onset of radiation feedback, or within 0.6-4.1 freefall times (increasing with 0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to , and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aabe27</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Cloud dispersal ; Cloud formation ; Clouds ; Computer simulation ; Density ; Dispersal ; Dispersion ; Disruption ; Ejection ; Feedback ; Ionization ; ISM: clouds ; ISM: kinematics and dynamics ; Massive stars ; Mathematical models ; methods: numerical ; Molecular clouds ; Numerical simulations ; Photoionization ; Radiation ; Radiation pressure ; radiation: dynamics ; regions ; Star &amp; galaxy formation ; Star clusters ; Star formation ; Stars &amp; galaxies ; stars: formation ; Stellar evolution ; Ultraviolet radiation</subject><ispartof>The Astrophysical journal, 2018-05, Vol.859 (1), p.68</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing May 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-6df67e78afcf898cd700f6e6ed8e1b094e8d5b116ff820e37bcd1c9236a5a0ab3</citedby><cites>FETCH-LOGICAL-c416t-6df67e78afcf898cd700f6e6ed8e1b094e8d5b116ff820e37bcd1c9236a5a0ab3</cites><orcidid>0000-0001-6228-8634 ; 0000-0003-4625-229X ; 0000-0002-0509-9113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Jeong-Gyu</creatorcontrib><creatorcontrib>Kim, Woong-Tae</creatorcontrib><creatorcontrib>Ostriker, Eve C.</creatorcontrib><title>Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, 0, such that the SFE increases from 4% to 51% as 0 increases from 13 to . Cloud destruction occurs within 2-10 Myr after the onset of radiation feedback, or within 0.6-4.1 freefall times (increasing with 0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to , and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.</description><subject>Astrophysics</subject><subject>Cloud dispersal</subject><subject>Cloud formation</subject><subject>Clouds</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Dispersal</subject><subject>Dispersion</subject><subject>Disruption</subject><subject>Ejection</subject><subject>Feedback</subject><subject>Ionization</subject><subject>ISM: clouds</subject><subject>ISM: kinematics and dynamics</subject><subject>Massive stars</subject><subject>Mathematical models</subject><subject>methods: numerical</subject><subject>Molecular clouds</subject><subject>Numerical simulations</subject><subject>Photoionization</subject><subject>Radiation</subject><subject>Radiation pressure</subject><subject>radiation: dynamics</subject><subject>regions</subject><subject>Star &amp; galaxy formation</subject><subject>Star clusters</subject><subject>Star formation</subject><subject>Stars &amp; galaxies</subject><subject>stars: formation</subject><subject>Stellar evolution</subject><subject>Ultraviolet radiation</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AUhBdRsFbvHhe8mnbTJLvJUaqthRaLWvEWXrJvdWuarbuJUP-F_9jEiHrx9HjDNzMwhJz6bBDEoRj6URB7YRCJIUCGI7FHej_SPukxxkKPB-LxkBw5t27fUZL0yMfCSCx0-URXD_QWpIZKm5JOEGUG-QtV1mzoApzTb0jvKrBuQGezAb3UbovWQUGN-tI9ZeymzZlqKCu6MAXmdQGWjgtTS0ezHV0-m8o06fq9K4FS_qlcWnSutnhMDhQUDk--b5-sJlf342tvfjOdjS_mXh76vPK4VFygiEHlKk7iXArGFEeOMkY_Y0mIsYwy3-dKxSOGgchy6efJKOAQAYMs6JOzLndrzWuNrkrXprZlU5k2UCQiHkSsoVhH5dY4Z1GlW6s3YHepz9J2-LRdOW1XTrvhG8t5Z9Fm-5v5L_4JR5WHMQ</recordid><startdate>20180520</startdate><enddate>20180520</enddate><creator>Kim, Jeong-Gyu</creator><creator>Kim, Woong-Tae</creator><creator>Ostriker, Eve C.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6228-8634</orcidid><orcidid>https://orcid.org/0000-0003-4625-229X</orcidid><orcidid>https://orcid.org/0000-0002-0509-9113</orcidid></search><sort><creationdate>20180520</creationdate><title>Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure</title><author>Kim, Jeong-Gyu ; Kim, Woong-Tae ; Ostriker, Eve C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-6df67e78afcf898cd700f6e6ed8e1b094e8d5b116ff820e37bcd1c9236a5a0ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astrophysics</topic><topic>Cloud dispersal</topic><topic>Cloud formation</topic><topic>Clouds</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Dispersal</topic><topic>Dispersion</topic><topic>Disruption</topic><topic>Ejection</topic><topic>Feedback</topic><topic>Ionization</topic><topic>ISM: clouds</topic><topic>ISM: kinematics and dynamics</topic><topic>Massive stars</topic><topic>Mathematical models</topic><topic>methods: numerical</topic><topic>Molecular clouds</topic><topic>Numerical simulations</topic><topic>Photoionization</topic><topic>Radiation</topic><topic>Radiation pressure</topic><topic>radiation: dynamics</topic><topic>regions</topic><topic>Star &amp; galaxy formation</topic><topic>Star clusters</topic><topic>Star formation</topic><topic>Stars &amp; galaxies</topic><topic>stars: formation</topic><topic>Stellar evolution</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jeong-Gyu</creatorcontrib><creatorcontrib>Kim, Woong-Tae</creatorcontrib><creatorcontrib>Ostriker, Eve C.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jeong-Gyu</au><au>Kim, Woong-Tae</au><au>Ostriker, Eve C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-05-20</date><risdate>2018</risdate><volume>859</volume><issue>1</issue><spage>68</spage><pages>68-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, 0, such that the SFE increases from 4% to 51% as 0 increases from 13 to . Cloud destruction occurs within 2-10 Myr after the onset of radiation feedback, or within 0.6-4.1 freefall times (increasing with 0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to , and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aabe27</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-6228-8634</orcidid><orcidid>https://orcid.org/0000-0003-4625-229X</orcidid><orcidid>https://orcid.org/0000-0002-0509-9113</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2018-05, Vol.859 (1), p.68
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_aabe27
source EZB-FREE-00999 freely available EZB journals
subjects Astrophysics
Cloud dispersal
Cloud formation
Clouds
Computer simulation
Density
Dispersal
Dispersion
Disruption
Ejection
Feedback
Ionization
ISM: clouds
ISM: kinematics and dynamics
Massive stars
Mathematical models
methods: numerical
Molecular clouds
Numerical simulations
Photoionization
Radiation
Radiation pressure
radiation: dynamics
regions
Star & galaxy formation
Star clusters
Star formation
Stars & galaxies
stars: formation
Stellar evolution
Ultraviolet radiation
title Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20UV%20Radiation%20Feedback%20from%20Massive%20Stars.%20II.%20Dispersal%20of%20Star-forming%20Giant%20Molecular%20Clouds%20by%20Photoionization%20and%20Radiation%20Pressure&rft.jtitle=The%20Astrophysical%20journal&rft.au=Kim,%20Jeong-Gyu&rft.date=2018-05-20&rft.volume=859&rft.issue=1&rft.spage=68&rft.pages=68-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aabe27&rft_dat=%3Cproquest_cross%3E2365756350%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-6df67e78afcf898cd700f6e6ed8e1b094e8d5b116ff820e37bcd1c9236a5a0ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365756350&rft_id=info:pmid/&rfr_iscdi=true