Loading…

Sound Speed Dependence of Alignment in Accretion Disks Subjected to Lense-Thirring Torques

We present a series of simulations in both pure hydrodynamics (HD) and magnetohydrodynamics (MHD) exploring the degree to which alignment of disks subjected to external precessional torques (e.g., as in the "Bardeen-Petterson" effect) is dependent upon the disk sound speed cs. Across the r...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2018-10, Vol.866 (1), p.5
Main Authors: Hawley, John F., Krolik, Julian H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-d236d4f43de65c1c3be82e71cf11d1bc4aaf5e6f9ac31914838d934260edcacc3
cites cdi_FETCH-LOGICAL-c350t-d236d4f43de65c1c3be82e71cf11d1bc4aaf5e6f9ac31914838d934260edcacc3
container_end_page
container_issue 1
container_start_page 5
container_title The Astrophysical journal
container_volume 866
creator Hawley, John F.
Krolik, Julian H.
description We present a series of simulations in both pure hydrodynamics (HD) and magnetohydrodynamics (MHD) exploring the degree to which alignment of disks subjected to external precessional torques (e.g., as in the "Bardeen-Petterson" effect) is dependent upon the disk sound speed cs. Across the range of sound speeds examined, we find that the influence of the sound speed can be encapsulated in a simple "lumped-parameter" model proposed by Sorathia et al. In this model, alignment fronts propagate outward at a speed 0.2r precess(r), where precess is the local test-particle precession frequency. Meanwhile, transonic radial motions transport angular momentum both inward and outward at a rate that can, in steady-state, be described roughly in terms of an orientation diffusion model with diffusion coefficient , for local orbital frequency . The competition between the two leads, in isothermal disks, to a stationary position for the alignment front at a radius . For alignment to happen at all, the disk must either be turbulent due to the magnetorotational instability in MHD, or, in HD, it must be cool enough for the bending waves driven by disk warp to be nonlinear at their launch point. Contrary to long-standing predictions, warp dynamics in MHD disks appears to be independent of the ratio cs/( vorb), for orbital speed vorb and ratio of stress to pressure . In purely HD disks, i.e., those with no internal stresses other than bulk viscosity, warmer disks align weakly or not at all; cooler disks align qualitatively similarly to MHD disks.
doi_str_mv 10.3847/1538-4357/aadf90
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_aadf90</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365917287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-d236d4f43de65c1c3be82e71cf11d1bc4aaf5e6f9ac31914838d934260edcacc3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKt7lwG3jk0mmUeWpT6h4KIVxE1Ik5ua2iZjMrPw3zvDiK5cXc7lPOBD6JKSG1bzakYLVmecFdVMKWMFOUKT39cxmhBCeFay6vUUnaW0G2QuxAS9rULnDV41AAbfQgPegNeAg8Xzvdv6A_gWO4_nWkdoXfD41qWPhFfdZge67UNtwEvwCbL1u4vR-S1eh_jZQTpHJ1btE1z83Cl6ub9bLx6z5fPD02K-zDQrSJuZnJWGW84MlIWmmm2gzqGi2lJq6EZzpWwBpRVKMyoor1ltBON5ScBopTWboquxt4lh2G3lLnTR95Oyry4ErfK66l1kdOkYUopgZRPdQcUvSYkcCMoBlxxwyZFgH7keIy40f53_2r8BodBzJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365917287</pqid></control><display><type>article</type><title>Sound Speed Dependence of Alignment in Accretion Disks Subjected to Lense-Thirring Torques</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Hawley, John F. ; Krolik, Julian H.</creator><creatorcontrib>Hawley, John F. ; Krolik, Julian H.</creatorcontrib><description>We present a series of simulations in both pure hydrodynamics (HD) and magnetohydrodynamics (MHD) exploring the degree to which alignment of disks subjected to external precessional torques (e.g., as in the "Bardeen-Petterson" effect) is dependent upon the disk sound speed cs. Across the range of sound speeds examined, we find that the influence of the sound speed can be encapsulated in a simple "lumped-parameter" model proposed by Sorathia et al. In this model, alignment fronts propagate outward at a speed 0.2r precess(r), where precess is the local test-particle precession frequency. Meanwhile, transonic radial motions transport angular momentum both inward and outward at a rate that can, in steady-state, be described roughly in terms of an orientation diffusion model with diffusion coefficient , for local orbital frequency . The competition between the two leads, in isothermal disks, to a stationary position for the alignment front at a radius . For alignment to happen at all, the disk must either be turbulent due to the magnetorotational instability in MHD, or, in HD, it must be cool enough for the bending waves driven by disk warp to be nonlinear at their launch point. Contrary to long-standing predictions, warp dynamics in MHD disks appears to be independent of the ratio cs/( vorb), for orbital speed vorb and ratio of stress to pressure . In purely HD disks, i.e., those with no internal stresses other than bulk viscosity, warmer disks align weakly or not at all; cooler disks align qualitatively similarly to MHD disks.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aadf90</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion disks ; accretion, accretion disks ; Alignment ; Angular momentum ; Astrophysics ; Computational fluid dynamics ; Computer simulation ; Diffusion ; Diffusion coefficient ; Fluid flow ; Hydrodynamics ; Magnetic fields ; Magnetohydrodynamic turbulence ; Magnetohydrodynamics ; Residual stress ; Sound ; stars: black holes ; Torque ; turbulence ; Viscosity</subject><ispartof>The Astrophysical journal, 2018-10, Vol.866 (1), p.5</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Oct 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-d236d4f43de65c1c3be82e71cf11d1bc4aaf5e6f9ac31914838d934260edcacc3</citedby><cites>FETCH-LOGICAL-c350t-d236d4f43de65c1c3be82e71cf11d1bc4aaf5e6f9ac31914838d934260edcacc3</cites><orcidid>0000-0002-0376-0318 ; 0000-0002-2995-7717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hawley, John F.</creatorcontrib><creatorcontrib>Krolik, Julian H.</creatorcontrib><title>Sound Speed Dependence of Alignment in Accretion Disks Subjected to Lense-Thirring Torques</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a series of simulations in both pure hydrodynamics (HD) and magnetohydrodynamics (MHD) exploring the degree to which alignment of disks subjected to external precessional torques (e.g., as in the "Bardeen-Petterson" effect) is dependent upon the disk sound speed cs. Across the range of sound speeds examined, we find that the influence of the sound speed can be encapsulated in a simple "lumped-parameter" model proposed by Sorathia et al. In this model, alignment fronts propagate outward at a speed 0.2r precess(r), where precess is the local test-particle precession frequency. Meanwhile, transonic radial motions transport angular momentum both inward and outward at a rate that can, in steady-state, be described roughly in terms of an orientation diffusion model with diffusion coefficient , for local orbital frequency . The competition between the two leads, in isothermal disks, to a stationary position for the alignment front at a radius . For alignment to happen at all, the disk must either be turbulent due to the magnetorotational instability in MHD, or, in HD, it must be cool enough for the bending waves driven by disk warp to be nonlinear at their launch point. Contrary to long-standing predictions, warp dynamics in MHD disks appears to be independent of the ratio cs/( vorb), for orbital speed vorb and ratio of stress to pressure . In purely HD disks, i.e., those with no internal stresses other than bulk viscosity, warmer disks align weakly or not at all; cooler disks align qualitatively similarly to MHD disks.</description><subject>Accretion disks</subject><subject>accretion, accretion disks</subject><subject>Alignment</subject><subject>Angular momentum</subject><subject>Astrophysics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Magnetohydrodynamics</subject><subject>Residual stress</subject><subject>Sound</subject><subject>stars: black holes</subject><subject>Torque</subject><subject>turbulence</subject><subject>Viscosity</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKt7lwG3jk0mmUeWpT6h4KIVxE1Ik5ua2iZjMrPw3zvDiK5cXc7lPOBD6JKSG1bzakYLVmecFdVMKWMFOUKT39cxmhBCeFay6vUUnaW0G2QuxAS9rULnDV41AAbfQgPegNeAg8Xzvdv6A_gWO4_nWkdoXfD41qWPhFfdZge67UNtwEvwCbL1u4vR-S1eh_jZQTpHJ1btE1z83Cl6ub9bLx6z5fPD02K-zDQrSJuZnJWGW84MlIWmmm2gzqGi2lJq6EZzpWwBpRVKMyoor1ltBON5ScBopTWboquxt4lh2G3lLnTR95Oyry4ErfK66l1kdOkYUopgZRPdQcUvSYkcCMoBlxxwyZFgH7keIy40f53_2r8BodBzJA</recordid><startdate>20181010</startdate><enddate>20181010</enddate><creator>Hawley, John F.</creator><creator>Krolik, Julian H.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0376-0318</orcidid><orcidid>https://orcid.org/0000-0002-2995-7717</orcidid></search><sort><creationdate>20181010</creationdate><title>Sound Speed Dependence of Alignment in Accretion Disks Subjected to Lense-Thirring Torques</title><author>Hawley, John F. ; Krolik, Julian H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-d236d4f43de65c1c3be82e71cf11d1bc4aaf5e6f9ac31914838d934260edcacc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accretion disks</topic><topic>accretion, accretion disks</topic><topic>Alignment</topic><topic>Angular momentum</topic><topic>Astrophysics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Magnetohydrodynamics</topic><topic>Residual stress</topic><topic>Sound</topic><topic>stars: black holes</topic><topic>Torque</topic><topic>turbulence</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hawley, John F.</creatorcontrib><creatorcontrib>Krolik, Julian H.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hawley, John F.</au><au>Krolik, Julian H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sound Speed Dependence of Alignment in Accretion Disks Subjected to Lense-Thirring Torques</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-10-10</date><risdate>2018</risdate><volume>866</volume><issue>1</issue><spage>5</spage><pages>5-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a series of simulations in both pure hydrodynamics (HD) and magnetohydrodynamics (MHD) exploring the degree to which alignment of disks subjected to external precessional torques (e.g., as in the "Bardeen-Petterson" effect) is dependent upon the disk sound speed cs. Across the range of sound speeds examined, we find that the influence of the sound speed can be encapsulated in a simple "lumped-parameter" model proposed by Sorathia et al. In this model, alignment fronts propagate outward at a speed 0.2r precess(r), where precess is the local test-particle precession frequency. Meanwhile, transonic radial motions transport angular momentum both inward and outward at a rate that can, in steady-state, be described roughly in terms of an orientation diffusion model with diffusion coefficient , for local orbital frequency . The competition between the two leads, in isothermal disks, to a stationary position for the alignment front at a radius . For alignment to happen at all, the disk must either be turbulent due to the magnetorotational instability in MHD, or, in HD, it must be cool enough for the bending waves driven by disk warp to be nonlinear at their launch point. Contrary to long-standing predictions, warp dynamics in MHD disks appears to be independent of the ratio cs/( vorb), for orbital speed vorb and ratio of stress to pressure . In purely HD disks, i.e., those with no internal stresses other than bulk viscosity, warmer disks align weakly or not at all; cooler disks align qualitatively similarly to MHD disks.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aadf90</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0376-0318</orcidid><orcidid>https://orcid.org/0000-0002-2995-7717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2018-10, Vol.866 (1), p.5
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_aadf90
source Free E-Journal (出版社公開部分のみ)
subjects Accretion disks
accretion, accretion disks
Alignment
Angular momentum
Astrophysics
Computational fluid dynamics
Computer simulation
Diffusion
Diffusion coefficient
Fluid flow
Hydrodynamics
Magnetic fields
Magnetohydrodynamic turbulence
Magnetohydrodynamics
Residual stress
Sound
stars: black holes
Torque
turbulence
Viscosity
title Sound Speed Dependence of Alignment in Accretion Disks Subjected to Lense-Thirring Torques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sound%20Speed%20Dependence%20of%20Alignment%20in%20Accretion%20Disks%20Subjected%20to%20Lense-Thirring%20Torques&rft.jtitle=The%20Astrophysical%20journal&rft.au=Hawley,%20John%20F.&rft.date=2018-10-10&rft.volume=866&rft.issue=1&rft.spage=5&rft.pages=5-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aadf90&rft_dat=%3Cproquest_cross%3E2365917287%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-d236d4f43de65c1c3be82e71cf11d1bc4aaf5e6f9ac31914838d934260edcacc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365917287&rft_id=info:pmid/&rfr_iscdi=true