Loading…
Sound Speed Dependence of Alignment in Accretion Disks Subjected to Lense-Thirring Torques
We present a series of simulations in both pure hydrodynamics (HD) and magnetohydrodynamics (MHD) exploring the degree to which alignment of disks subjected to external precessional torques (e.g., as in the "Bardeen-Petterson" effect) is dependent upon the disk sound speed cs. Across the r...
Saved in:
Published in: | The Astrophysical journal 2018-10, Vol.866 (1), p.5 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-d236d4f43de65c1c3be82e71cf11d1bc4aaf5e6f9ac31914838d934260edcacc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-d236d4f43de65c1c3be82e71cf11d1bc4aaf5e6f9ac31914838d934260edcacc3 |
container_end_page | |
container_issue | 1 |
container_start_page | 5 |
container_title | The Astrophysical journal |
container_volume | 866 |
creator | Hawley, John F. Krolik, Julian H. |
description | We present a series of simulations in both pure hydrodynamics (HD) and magnetohydrodynamics (MHD) exploring the degree to which alignment of disks subjected to external precessional torques (e.g., as in the "Bardeen-Petterson" effect) is dependent upon the disk sound speed cs. Across the range of sound speeds examined, we find that the influence of the sound speed can be encapsulated in a simple "lumped-parameter" model proposed by Sorathia et al. In this model, alignment fronts propagate outward at a speed 0.2r precess(r), where precess is the local test-particle precession frequency. Meanwhile, transonic radial motions transport angular momentum both inward and outward at a rate that can, in steady-state, be described roughly in terms of an orientation diffusion model with diffusion coefficient , for local orbital frequency . The competition between the two leads, in isothermal disks, to a stationary position for the alignment front at a radius . For alignment to happen at all, the disk must either be turbulent due to the magnetorotational instability in MHD, or, in HD, it must be cool enough for the bending waves driven by disk warp to be nonlinear at their launch point. Contrary to long-standing predictions, warp dynamics in MHD disks appears to be independent of the ratio cs/( vorb), for orbital speed vorb and ratio of stress to pressure . In purely HD disks, i.e., those with no internal stresses other than bulk viscosity, warmer disks align weakly or not at all; cooler disks align qualitatively similarly to MHD disks. |
doi_str_mv | 10.3847/1538-4357/aadf90 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_aadf90</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365917287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-d236d4f43de65c1c3be82e71cf11d1bc4aaf5e6f9ac31914838d934260edcacc3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKt7lwG3jk0mmUeWpT6h4KIVxE1Ik5ua2iZjMrPw3zvDiK5cXc7lPOBD6JKSG1bzakYLVmecFdVMKWMFOUKT39cxmhBCeFay6vUUnaW0G2QuxAS9rULnDV41AAbfQgPegNeAg8Xzvdv6A_gWO4_nWkdoXfD41qWPhFfdZge67UNtwEvwCbL1u4vR-S1eh_jZQTpHJ1btE1z83Cl6ub9bLx6z5fPD02K-zDQrSJuZnJWGW84MlIWmmm2gzqGi2lJq6EZzpWwBpRVKMyoor1ltBON5ScBopTWboquxt4lh2G3lLnTR95Oyry4ErfK66l1kdOkYUopgZRPdQcUvSYkcCMoBlxxwyZFgH7keIy40f53_2r8BodBzJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365917287</pqid></control><display><type>article</type><title>Sound Speed Dependence of Alignment in Accretion Disks Subjected to Lense-Thirring Torques</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Hawley, John F. ; Krolik, Julian H.</creator><creatorcontrib>Hawley, John F. ; Krolik, Julian H.</creatorcontrib><description>We present a series of simulations in both pure hydrodynamics (HD) and magnetohydrodynamics (MHD) exploring the degree to which alignment of disks subjected to external precessional torques (e.g., as in the "Bardeen-Petterson" effect) is dependent upon the disk sound speed cs. Across the range of sound speeds examined, we find that the influence of the sound speed can be encapsulated in a simple "lumped-parameter" model proposed by Sorathia et al. In this model, alignment fronts propagate outward at a speed 0.2r precess(r), where precess is the local test-particle precession frequency. Meanwhile, transonic radial motions transport angular momentum both inward and outward at a rate that can, in steady-state, be described roughly in terms of an orientation diffusion model with diffusion coefficient , for local orbital frequency . The competition between the two leads, in isothermal disks, to a stationary position for the alignment front at a radius . For alignment to happen at all, the disk must either be turbulent due to the magnetorotational instability in MHD, or, in HD, it must be cool enough for the bending waves driven by disk warp to be nonlinear at their launch point. Contrary to long-standing predictions, warp dynamics in MHD disks appears to be independent of the ratio cs/( vorb), for orbital speed vorb and ratio of stress to pressure . In purely HD disks, i.e., those with no internal stresses other than bulk viscosity, warmer disks align weakly or not at all; cooler disks align qualitatively similarly to MHD disks.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aadf90</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion disks ; accretion, accretion disks ; Alignment ; Angular momentum ; Astrophysics ; Computational fluid dynamics ; Computer simulation ; Diffusion ; Diffusion coefficient ; Fluid flow ; Hydrodynamics ; Magnetic fields ; Magnetohydrodynamic turbulence ; Magnetohydrodynamics ; Residual stress ; Sound ; stars: black holes ; Torque ; turbulence ; Viscosity</subject><ispartof>The Astrophysical journal, 2018-10, Vol.866 (1), p.5</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Oct 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-d236d4f43de65c1c3be82e71cf11d1bc4aaf5e6f9ac31914838d934260edcacc3</citedby><cites>FETCH-LOGICAL-c350t-d236d4f43de65c1c3be82e71cf11d1bc4aaf5e6f9ac31914838d934260edcacc3</cites><orcidid>0000-0002-0376-0318 ; 0000-0002-2995-7717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hawley, John F.</creatorcontrib><creatorcontrib>Krolik, Julian H.</creatorcontrib><title>Sound Speed Dependence of Alignment in Accretion Disks Subjected to Lense-Thirring Torques</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a series of simulations in both pure hydrodynamics (HD) and magnetohydrodynamics (MHD) exploring the degree to which alignment of disks subjected to external precessional torques (e.g., as in the "Bardeen-Petterson" effect) is dependent upon the disk sound speed cs. Across the range of sound speeds examined, we find that the influence of the sound speed can be encapsulated in a simple "lumped-parameter" model proposed by Sorathia et al. In this model, alignment fronts propagate outward at a speed 0.2r precess(r), where precess is the local test-particle precession frequency. Meanwhile, transonic radial motions transport angular momentum both inward and outward at a rate that can, in steady-state, be described roughly in terms of an orientation diffusion model with diffusion coefficient , for local orbital frequency . The competition between the two leads, in isothermal disks, to a stationary position for the alignment front at a radius . For alignment to happen at all, the disk must either be turbulent due to the magnetorotational instability in MHD, or, in HD, it must be cool enough for the bending waves driven by disk warp to be nonlinear at their launch point. Contrary to long-standing predictions, warp dynamics in MHD disks appears to be independent of the ratio cs/( vorb), for orbital speed vorb and ratio of stress to pressure . In purely HD disks, i.e., those with no internal stresses other than bulk viscosity, warmer disks align weakly or not at all; cooler disks align qualitatively similarly to MHD disks.</description><subject>Accretion disks</subject><subject>accretion, accretion disks</subject><subject>Alignment</subject><subject>Angular momentum</subject><subject>Astrophysics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Magnetohydrodynamics</subject><subject>Residual stress</subject><subject>Sound</subject><subject>stars: black holes</subject><subject>Torque</subject><subject>turbulence</subject><subject>Viscosity</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKt7lwG3jk0mmUeWpT6h4KIVxE1Ik5ua2iZjMrPw3zvDiK5cXc7lPOBD6JKSG1bzakYLVmecFdVMKWMFOUKT39cxmhBCeFay6vUUnaW0G2QuxAS9rULnDV41AAbfQgPegNeAg8Xzvdv6A_gWO4_nWkdoXfD41qWPhFfdZge67UNtwEvwCbL1u4vR-S1eh_jZQTpHJ1btE1z83Cl6ub9bLx6z5fPD02K-zDQrSJuZnJWGW84MlIWmmm2gzqGi2lJq6EZzpWwBpRVKMyoor1ltBON5ScBopTWboquxt4lh2G3lLnTR95Oyry4ErfK66l1kdOkYUopgZRPdQcUvSYkcCMoBlxxwyZFgH7keIy40f53_2r8BodBzJA</recordid><startdate>20181010</startdate><enddate>20181010</enddate><creator>Hawley, John F.</creator><creator>Krolik, Julian H.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0376-0318</orcidid><orcidid>https://orcid.org/0000-0002-2995-7717</orcidid></search><sort><creationdate>20181010</creationdate><title>Sound Speed Dependence of Alignment in Accretion Disks Subjected to Lense-Thirring Torques</title><author>Hawley, John F. ; Krolik, Julian H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-d236d4f43de65c1c3be82e71cf11d1bc4aaf5e6f9ac31914838d934260edcacc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accretion disks</topic><topic>accretion, accretion disks</topic><topic>Alignment</topic><topic>Angular momentum</topic><topic>Astrophysics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Magnetohydrodynamics</topic><topic>Residual stress</topic><topic>Sound</topic><topic>stars: black holes</topic><topic>Torque</topic><topic>turbulence</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hawley, John F.</creatorcontrib><creatorcontrib>Krolik, Julian H.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hawley, John F.</au><au>Krolik, Julian H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sound Speed Dependence of Alignment in Accretion Disks Subjected to Lense-Thirring Torques</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-10-10</date><risdate>2018</risdate><volume>866</volume><issue>1</issue><spage>5</spage><pages>5-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a series of simulations in both pure hydrodynamics (HD) and magnetohydrodynamics (MHD) exploring the degree to which alignment of disks subjected to external precessional torques (e.g., as in the "Bardeen-Petterson" effect) is dependent upon the disk sound speed cs. Across the range of sound speeds examined, we find that the influence of the sound speed can be encapsulated in a simple "lumped-parameter" model proposed by Sorathia et al. In this model, alignment fronts propagate outward at a speed 0.2r precess(r), where precess is the local test-particle precession frequency. Meanwhile, transonic radial motions transport angular momentum both inward and outward at a rate that can, in steady-state, be described roughly in terms of an orientation diffusion model with diffusion coefficient , for local orbital frequency . The competition between the two leads, in isothermal disks, to a stationary position for the alignment front at a radius . For alignment to happen at all, the disk must either be turbulent due to the magnetorotational instability in MHD, or, in HD, it must be cool enough for the bending waves driven by disk warp to be nonlinear at their launch point. Contrary to long-standing predictions, warp dynamics in MHD disks appears to be independent of the ratio cs/( vorb), for orbital speed vorb and ratio of stress to pressure . In purely HD disks, i.e., those with no internal stresses other than bulk viscosity, warmer disks align weakly or not at all; cooler disks align qualitatively similarly to MHD disks.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aadf90</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0376-0318</orcidid><orcidid>https://orcid.org/0000-0002-2995-7717</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2018-10, Vol.866 (1), p.5 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_aadf90 |
source | Free E-Journal (出版社公開部分のみ) |
subjects | Accretion disks accretion, accretion disks Alignment Angular momentum Astrophysics Computational fluid dynamics Computer simulation Diffusion Diffusion coefficient Fluid flow Hydrodynamics Magnetic fields Magnetohydrodynamic turbulence Magnetohydrodynamics Residual stress Sound stars: black holes Torque turbulence Viscosity |
title | Sound Speed Dependence of Alignment in Accretion Disks Subjected to Lense-Thirring Torques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sound%20Speed%20Dependence%20of%20Alignment%20in%20Accretion%20Disks%20Subjected%20to%20Lense-Thirring%20Torques&rft.jtitle=The%20Astrophysical%20journal&rft.au=Hawley,%20John%20F.&rft.date=2018-10-10&rft.volume=866&rft.issue=1&rft.spage=5&rft.pages=5-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aadf90&rft_dat=%3Cproquest_cross%3E2365917287%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-d236d4f43de65c1c3be82e71cf11d1bc4aaf5e6f9ac31914838d934260edcacc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365917287&rft_id=info:pmid/&rfr_iscdi=true |