Loading…

Amplitude Modulation of Short-timescale Hot Spot Variability

Variability of Classical T Tauri stars (CTTS) occurs over a vast range of timescales. CTTS in particular are subject to variability caused by accretion shocks, which can occur stochastically, periodically, or quasi-periodically on timescales over a few days. The detectability of young planets within...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2021-01, Vol.906 (2), p.113
Main Authors: Biddle, Lauren I., Llama, Joe, Cameron, Andrew, Prato, L., Jardine, Moira, Johns-Krull, Christopher M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Variability of Classical T Tauri stars (CTTS) occurs over a vast range of timescales. CTTS in particular are subject to variability caused by accretion shocks, which can occur stochastically, periodically, or quasi-periodically on timescales over a few days. The detectability of young planets within these systems is likely hampered by activity; therefore, it is essential that we understand the origin of young star variability over a range of timescales to help disentangle stellar activity from signatures of planetary origin. We present an analysis of the stochastic small-amplitude photometric variability in the K2 lightcurve of CI Tau occurring on timescales of 1 day. We find the amplitude of this variability exhibits the same periodic signatures as detected in the large-amplitude variability, indicating that the physical mechanism modulating these brightness features is the same. The periods detected are also in agreement with the rotation period of the star (∼6.6 days) and the orbital period of the planet (∼9.0 days) known to drive pulsed accretion onto the star.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/abc889