Loading…
Using the Optical–NIR Spectral Energy Distributions to Search for the Evidence of Dust Formation of 66 Supernovae
In this paper, we searched for the dust formation evidence of 66 supernovae (SNe) by using the blackbody model and the blackbody plus dust emission model to fit their early-time optical–near-infrared (NIR) spectral energy distributions (SEDs). We find that, while the blackbody model can fit most SED...
Saved in:
Published in: | The Astrophysical journal 2022-03, Vol.928 (1), p.77 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c416t-55205a315a0c5ca809ece6aa055b518c024c78457accfd25d6c894f7195a991a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c416t-55205a315a0c5ca809ece6aa055b518c024c78457accfd25d6c894f7195a991a3 |
container_end_page | |
container_issue | 1 |
container_start_page | 77 |
container_title | The Astrophysical journal |
container_volume | 928 |
creator | Li, Jing-Yao Wang, Shan-Qin Gan, Wen-Pei Wang, Tao Lian, Ji-Shun Bai, Song-Yao Liang, En-Wei |
description | In this paper, we searched for the dust formation evidence of 66 supernovae (SNe) by using the blackbody model and the blackbody plus dust emission model to fit their early-time optical–near-infrared (NIR) spectral energy distributions (SEDs). We find that, while the blackbody model can fit most SEDs of the SNe in our sample, the model cannot fit the SEDs of some SNe in which the SEDs of two SNe (SNe 2010bq and 2012ca) show NIR excesses which can be attributed to the emission from the heated dust. We use the blackbody plus dust emission model to fit the SEDs showing NIR excesses, finding that both the graphite and silicate dust models can fit the SEDs, and the graphite model gets reasonable temperatures or better fits. Assuming that the dust is graphite, the best-fitting temperatures (masses) of the dust of SNe 2010bq and 2012ca are ∼1300–1800 K (∼0.1–3.4 ×10
−4
M
⊙
) and ∼600–1000 K (∼0.6–7.5 × 10
−3
M
⊙
), respectively. We compare the vaporization radii and the blackbody radii of the dust shells of the two SNe with the upper limits of the ejecta radii of the SNe at the first epochs, and demonstrate that the NIR excesses of the SEDs of the two SNe might be caused by the pre-existing dust. |
doi_str_mv | 10.3847/1538-4357/ac5255 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ac5255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644423209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-55205a315a0c5ca809ece6aa055b518c024c78457accfd25d6c894f7195a991a3</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKt7lwG3js1kkpnJUvqjhWLBWnAXbtNMm9JOxiRT6M538A19EjuO6MrV5V7O9104CF3H5C7JWdaLeZJHLOFZDxSnnJ-gzu_pFHUIISxKk-z1HF14v2lWKkQH-bk35QqHtcbTKhgF28_3j6fxM55VWgUHWzwstVsd8MD44MyiDsaWHgeLZxqcWuPCuu_0cG-WulQa2wIPah_wyLodNHRzSVM8qyvtSrsHfYnOCth6ffUzu2g-Gr70H6PJ9GHcv59EisVpiDinhEMScyCKK8iJ0EqnAITzBY9zRShTWc54BkoVS8qXqcoFK7JYcBAihqSLbtreytm3WvsgN7Z25fGlpCljjCaUiCNFWko5673Thayc2YE7yJjIRq1sPMrGo2zVHiO3bcTY6q_zX_wLfKV6dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644423209</pqid></control><display><type>article</type><title>Using the Optical–NIR Spectral Energy Distributions to Search for the Evidence of Dust Formation of 66 Supernovae</title><source>EZB Electronic Journals Library</source><creator>Li, Jing-Yao ; Wang, Shan-Qin ; Gan, Wen-Pei ; Wang, Tao ; Lian, Ji-Shun ; Bai, Song-Yao ; Liang, En-Wei</creator><creatorcontrib>Li, Jing-Yao ; Wang, Shan-Qin ; Gan, Wen-Pei ; Wang, Tao ; Lian, Ji-Shun ; Bai, Song-Yao ; Liang, En-Wei</creatorcontrib><description>In this paper, we searched for the dust formation evidence of 66 supernovae (SNe) by using the blackbody model and the blackbody plus dust emission model to fit their early-time optical–near-infrared (NIR) spectral energy distributions (SEDs). We find that, while the blackbody model can fit most SEDs of the SNe in our sample, the model cannot fit the SEDs of some SNe in which the SEDs of two SNe (SNe 2010bq and 2012ca) show NIR excesses which can be attributed to the emission from the heated dust. We use the blackbody plus dust emission model to fit the SEDs showing NIR excesses, finding that both the graphite and silicate dust models can fit the SEDs, and the graphite model gets reasonable temperatures or better fits. Assuming that the dust is graphite, the best-fitting temperatures (masses) of the dust of SNe 2010bq and 2012ca are ∼1300–1800 K (∼0.1–3.4 ×10
−4
M
⊙
) and ∼600–1000 K (∼0.6–7.5 × 10
−3
M
⊙
), respectively. We compare the vaporization radii and the blackbody radii of the dust shells of the two SNe with the upper limits of the ejecta radii of the SNe at the first epochs, and demonstrate that the NIR excesses of the SEDs of the two SNe might be caused by the pre-existing dust.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac5255</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Blackbody ; Circumstellar dust ; Dust ; Dust emission ; Ejecta ; Emission ; Graphite ; Modelling ; Near infrared radiation ; Supernovae ; Vaporization</subject><ispartof>The Astrophysical journal, 2022-03, Vol.928 (1), p.77</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-55205a315a0c5ca809ece6aa055b518c024c78457accfd25d6c894f7195a991a3</citedby><cites>FETCH-LOGICAL-c416t-55205a315a0c5ca809ece6aa055b518c024c78457accfd25d6c894f7195a991a3</cites><orcidid>0000-0001-7867-9912 ; 0000-0002-7044-733X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Jing-Yao</creatorcontrib><creatorcontrib>Wang, Shan-Qin</creatorcontrib><creatorcontrib>Gan, Wen-Pei</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Lian, Ji-Shun</creatorcontrib><creatorcontrib>Bai, Song-Yao</creatorcontrib><creatorcontrib>Liang, En-Wei</creatorcontrib><title>Using the Optical–NIR Spectral Energy Distributions to Search for the Evidence of Dust Formation of 66 Supernovae</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>In this paper, we searched for the dust formation evidence of 66 supernovae (SNe) by using the blackbody model and the blackbody plus dust emission model to fit their early-time optical–near-infrared (NIR) spectral energy distributions (SEDs). We find that, while the blackbody model can fit most SEDs of the SNe in our sample, the model cannot fit the SEDs of some SNe in which the SEDs of two SNe (SNe 2010bq and 2012ca) show NIR excesses which can be attributed to the emission from the heated dust. We use the blackbody plus dust emission model to fit the SEDs showing NIR excesses, finding that both the graphite and silicate dust models can fit the SEDs, and the graphite model gets reasonable temperatures or better fits. Assuming that the dust is graphite, the best-fitting temperatures (masses) of the dust of SNe 2010bq and 2012ca are ∼1300–1800 K (∼0.1–3.4 ×10
−4
M
⊙
) and ∼600–1000 K (∼0.6–7.5 × 10
−3
M
⊙
), respectively. We compare the vaporization radii and the blackbody radii of the dust shells of the two SNe with the upper limits of the ejecta radii of the SNe at the first epochs, and demonstrate that the NIR excesses of the SEDs of the two SNe might be caused by the pre-existing dust.</description><subject>Astrophysics</subject><subject>Blackbody</subject><subject>Circumstellar dust</subject><subject>Dust</subject><subject>Dust emission</subject><subject>Ejecta</subject><subject>Emission</subject><subject>Graphite</subject><subject>Modelling</subject><subject>Near infrared radiation</subject><subject>Supernovae</subject><subject>Vaporization</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEURoMoWKt7lwG3js1kkpnJUvqjhWLBWnAXbtNMm9JOxiRT6M538A19EjuO6MrV5V7O9104CF3H5C7JWdaLeZJHLOFZDxSnnJ-gzu_pFHUIISxKk-z1HF14v2lWKkQH-bk35QqHtcbTKhgF28_3j6fxM55VWgUHWzwstVsd8MD44MyiDsaWHgeLZxqcWuPCuu_0cG-WulQa2wIPah_wyLodNHRzSVM8qyvtSrsHfYnOCth6ffUzu2g-Gr70H6PJ9GHcv59EisVpiDinhEMScyCKK8iJ0EqnAITzBY9zRShTWc54BkoVS8qXqcoFK7JYcBAihqSLbtreytm3WvsgN7Z25fGlpCljjCaUiCNFWko5673Thayc2YE7yJjIRq1sPMrGo2zVHiO3bcTY6q_zX_wLfKV6dQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Li, Jing-Yao</creator><creator>Wang, Shan-Qin</creator><creator>Gan, Wen-Pei</creator><creator>Wang, Tao</creator><creator>Lian, Ji-Shun</creator><creator>Bai, Song-Yao</creator><creator>Liang, En-Wei</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7867-9912</orcidid><orcidid>https://orcid.org/0000-0002-7044-733X</orcidid></search><sort><creationdate>20220301</creationdate><title>Using the Optical–NIR Spectral Energy Distributions to Search for the Evidence of Dust Formation of 66 Supernovae</title><author>Li, Jing-Yao ; Wang, Shan-Qin ; Gan, Wen-Pei ; Wang, Tao ; Lian, Ji-Shun ; Bai, Song-Yao ; Liang, En-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-55205a315a0c5ca809ece6aa055b518c024c78457accfd25d6c894f7195a991a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrophysics</topic><topic>Blackbody</topic><topic>Circumstellar dust</topic><topic>Dust</topic><topic>Dust emission</topic><topic>Ejecta</topic><topic>Emission</topic><topic>Graphite</topic><topic>Modelling</topic><topic>Near infrared radiation</topic><topic>Supernovae</topic><topic>Vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jing-Yao</creatorcontrib><creatorcontrib>Wang, Shan-Qin</creatorcontrib><creatorcontrib>Gan, Wen-Pei</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Lian, Ji-Shun</creatorcontrib><creatorcontrib>Bai, Song-Yao</creatorcontrib><creatorcontrib>Liang, En-Wei</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jing-Yao</au><au>Wang, Shan-Qin</au><au>Gan, Wen-Pei</au><au>Wang, Tao</au><au>Lian, Ji-Shun</au><au>Bai, Song-Yao</au><au>Liang, En-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the Optical–NIR Spectral Energy Distributions to Search for the Evidence of Dust Formation of 66 Supernovae</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>928</volume><issue>1</issue><spage>77</spage><pages>77-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>In this paper, we searched for the dust formation evidence of 66 supernovae (SNe) by using the blackbody model and the blackbody plus dust emission model to fit their early-time optical–near-infrared (NIR) spectral energy distributions (SEDs). We find that, while the blackbody model can fit most SEDs of the SNe in our sample, the model cannot fit the SEDs of some SNe in which the SEDs of two SNe (SNe 2010bq and 2012ca) show NIR excesses which can be attributed to the emission from the heated dust. We use the blackbody plus dust emission model to fit the SEDs showing NIR excesses, finding that both the graphite and silicate dust models can fit the SEDs, and the graphite model gets reasonable temperatures or better fits. Assuming that the dust is graphite, the best-fitting temperatures (masses) of the dust of SNe 2010bq and 2012ca are ∼1300–1800 K (∼0.1–3.4 ×10
−4
M
⊙
) and ∼600–1000 K (∼0.6–7.5 × 10
−3
M
⊙
), respectively. We compare the vaporization radii and the blackbody radii of the dust shells of the two SNe with the upper limits of the ejecta radii of the SNe at the first epochs, and demonstrate that the NIR excesses of the SEDs of the two SNe might be caused by the pre-existing dust.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac5255</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7867-9912</orcidid><orcidid>https://orcid.org/0000-0002-7044-733X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2022-03, Vol.928 (1), p.77 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_ac5255 |
source | EZB Electronic Journals Library |
subjects | Astrophysics Blackbody Circumstellar dust Dust Dust emission Ejecta Emission Graphite Modelling Near infrared radiation Supernovae Vaporization |
title | Using the Optical–NIR Spectral Energy Distributions to Search for the Evidence of Dust Formation of 66 Supernovae |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20Optical%E2%80%93NIR%20Spectral%20Energy%20Distributions%20to%20Search%20for%20the%20Evidence%20of%20Dust%20Formation%20of%2066%20Supernovae&rft.jtitle=The%20Astrophysical%20journal&rft.au=Li,%20Jing-Yao&rft.date=2022-03-01&rft.volume=928&rft.issue=1&rft.spage=77&rft.pages=77-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac5255&rft_dat=%3Cproquest_cross%3E2644423209%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-55205a315a0c5ca809ece6aa055b518c024c78457accfd25d6c894f7195a991a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2644423209&rft_id=info:pmid/&rfr_iscdi=true |