Loading…
Investigating the Disk–Jet Structure in M87 through Flux Separation in the Linear and Circular Polarization Images
For testing different electron temperature ( T e ) prescriptions in general relativistic magnetohydrodynamics (GRMHD) simulations through observations, we propose to utilize linear polarization (LP) and circular polarization (CP) images. We calculate the polarization images based on a semi-magnetica...
Saved in:
Published in: | The Astrophysical journal 2022-05, Vol.931 (1), p.25 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c445t-1cc5be92eb150122eae63cf3e78149f7a8e76523fe8653c286ab3555b966c59c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c445t-1cc5be92eb150122eae63cf3e78149f7a8e76523fe8653c286ab3555b966c59c3 |
container_end_page | |
container_issue | 1 |
container_start_page | 25 |
container_title | The Astrophysical journal |
container_volume | 931 |
creator | Tsunetoe, Yuh Mineshige, Shin Kawashima, Tomohisa Ohsuga, Ken Akiyama, Kazunori Takahashi, Hiroyuki R. |
description | For testing different electron temperature (
T
e
) prescriptions in general relativistic magnetohydrodynamics (GRMHD) simulations through observations, we propose to utilize linear polarization (LP) and circular polarization (CP) images. We calculate the polarization images based on a semi-magnetically arrested disk GRMHD model for various
T
e
parameters, bearing M87 in mind. We find an LP–CP separation in the images of the low-
T
e
disk cases at 230GHz; namely, the LP flux mainly originates from downstream of the jet, and the CP flux comes from the counter-side jet, while the total intensity is maximum at the jet base. This can be understood as follows: although the LP flux is generated through synchrotron emission widely around the black hole, most of the LP flux from the jet base does not reach the observer, since it undergoes Faraday rotation (
∝
T
e
−
2
) when passing through the outer cold disk and is thus depolarized. Hence, only the LP flux from the downstream (not passing the cold dense plasmas) can survive. Meanwhile, the CP flux is generated from the LP flux by Faraday conversion ( ∝
T
e
) in the inner hot region. Stronger CP flux is thus observed from the counter-side jet. Moreover, the LP–CP separation is more enhanced at a lower frequency, such as 86 GHz, but is rather weak at 43 GHz, since the media in the latter case is optically thick for synchrotron self-absorption so that all of the fluxes should come from the photosphere. The same is true for cases with higher mass accretion rates and/or larger inclination angles. |
doi_str_mv | 10.3847/1538-4357/ac66dd |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ac66dd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667259988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-1cc5be92eb150122eae63cf3e78149f7a8e76523fe8653c286ab3555b966c59c3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmNw5xgJjpQ1SZMmRzQYDA2BNJC4RWmabhmjLUmLgBPvwBvyJKQqggviYsv299vyD8A-io8JT9IRooRHCaHpSGnG8nwDDH5am2AQx3ESMZLeb4Md71ddiYUYgGZaPhvf2IVqbLmAzdLAU-sfPt8_Lk0D541rddM6A20Jr3ga5q5qF0s4WbcvcG5q5YKuKrtxJ53Z0igHVZnDsXW6XYfipgrRvvXc9FEtjN8FW4Vae7P3nYfgbnJ2O76IZtfn0_HJLNJJQpsIaU0zI7DJEI0RxkYZRnRBTMpRIopUcZMyiklhOKNEY85URiilmWBMU6HJEBz0e2tXPbXhTbmqWleGkxIzlmIqBOeBintKu8p7ZwpZO_uo3KtEsey8lZ2RsjNS9t4GyVEvsVX9u_Mf_PAPXNUrKQiSSGIq67wgX3GsiVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667259988</pqid></control><display><type>article</type><title>Investigating the Disk–Jet Structure in M87 through Flux Separation in the Linear and Circular Polarization Images</title><source>EZB Electronic Journals Library</source><creator>Tsunetoe, Yuh ; Mineshige, Shin ; Kawashima, Tomohisa ; Ohsuga, Ken ; Akiyama, Kazunori ; Takahashi, Hiroyuki R.</creator><creatorcontrib>Tsunetoe, Yuh ; Mineshige, Shin ; Kawashima, Tomohisa ; Ohsuga, Ken ; Akiyama, Kazunori ; Takahashi, Hiroyuki R.</creatorcontrib><description>For testing different electron temperature (
T
e
) prescriptions in general relativistic magnetohydrodynamics (GRMHD) simulations through observations, we propose to utilize linear polarization (LP) and circular polarization (CP) images. We calculate the polarization images based on a semi-magnetically arrested disk GRMHD model for various
T
e
parameters, bearing M87 in mind. We find an LP–CP separation in the images of the low-
T
e
disk cases at 230GHz; namely, the LP flux mainly originates from downstream of the jet, and the CP flux comes from the counter-side jet, while the total intensity is maximum at the jet base. This can be understood as follows: although the LP flux is generated through synchrotron emission widely around the black hole, most of the LP flux from the jet base does not reach the observer, since it undergoes Faraday rotation (
∝
T
e
−
2
) when passing through the outer cold disk and is thus depolarized. Hence, only the LP flux from the downstream (not passing the cold dense plasmas) can survive. Meanwhile, the CP flux is generated from the LP flux by Faraday conversion ( ∝
T
e
) in the inner hot region. Stronger CP flux is thus observed from the counter-side jet. Moreover, the LP–CP separation is more enhanced at a lower frequency, such as 86 GHz, but is rather weak at 43 GHz, since the media in the latter case is optically thick for synchrotron self-absorption so that all of the fluxes should come from the photosphere. The same is true for cases with higher mass accretion rates and/or larger inclination angles.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac66dd</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Active galactic nuclei ; Astrophysics ; Black hole physics ; Black holes ; Circular polarization ; Dense plasmas ; Deposition ; Electron energy ; Elliptical galaxies ; Faraday effect ; Fluctuations ; Inclination angle ; Linear polarization ; Magnetohydrodynamics ; Photosphere ; Plasmas (physics) ; Polarimetry ; Polarization ; Radiative transfer ; Radio jets ; Separation ; Synchrotrons</subject><ispartof>The Astrophysical journal, 2022-05, Vol.931 (1), p.25</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-1cc5be92eb150122eae63cf3e78149f7a8e76523fe8653c286ab3555b966c59c3</citedby><cites>FETCH-LOGICAL-c445t-1cc5be92eb150122eae63cf3e78149f7a8e76523fe8653c286ab3555b966c59c3</cites><orcidid>0000-0001-8527-0496 ; 0000-0002-9475-4254 ; 0000-0003-0114-5378 ; 0000-0003-0213-7628 ; 0000-0002-2309-3639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tsunetoe, Yuh</creatorcontrib><creatorcontrib>Mineshige, Shin</creatorcontrib><creatorcontrib>Kawashima, Tomohisa</creatorcontrib><creatorcontrib>Ohsuga, Ken</creatorcontrib><creatorcontrib>Akiyama, Kazunori</creatorcontrib><creatorcontrib>Takahashi, Hiroyuki R.</creatorcontrib><title>Investigating the Disk–Jet Structure in M87 through Flux Separation in the Linear and Circular Polarization Images</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>For testing different electron temperature (
T
e
) prescriptions in general relativistic magnetohydrodynamics (GRMHD) simulations through observations, we propose to utilize linear polarization (LP) and circular polarization (CP) images. We calculate the polarization images based on a semi-magnetically arrested disk GRMHD model for various
T
e
parameters, bearing M87 in mind. We find an LP–CP separation in the images of the low-
T
e
disk cases at 230GHz; namely, the LP flux mainly originates from downstream of the jet, and the CP flux comes from the counter-side jet, while the total intensity is maximum at the jet base. This can be understood as follows: although the LP flux is generated through synchrotron emission widely around the black hole, most of the LP flux from the jet base does not reach the observer, since it undergoes Faraday rotation (
∝
T
e
−
2
) when passing through the outer cold disk and is thus depolarized. Hence, only the LP flux from the downstream (not passing the cold dense plasmas) can survive. Meanwhile, the CP flux is generated from the LP flux by Faraday conversion ( ∝
T
e
) in the inner hot region. Stronger CP flux is thus observed from the counter-side jet. Moreover, the LP–CP separation is more enhanced at a lower frequency, such as 86 GHz, but is rather weak at 43 GHz, since the media in the latter case is optically thick for synchrotron self-absorption so that all of the fluxes should come from the photosphere. The same is true for cases with higher mass accretion rates and/or larger inclination angles.</description><subject>Active galactic nuclei</subject><subject>Astrophysics</subject><subject>Black hole physics</subject><subject>Black holes</subject><subject>Circular polarization</subject><subject>Dense plasmas</subject><subject>Deposition</subject><subject>Electron energy</subject><subject>Elliptical galaxies</subject><subject>Faraday effect</subject><subject>Fluctuations</subject><subject>Inclination angle</subject><subject>Linear polarization</subject><subject>Magnetohydrodynamics</subject><subject>Photosphere</subject><subject>Plasmas (physics)</subject><subject>Polarimetry</subject><subject>Polarization</subject><subject>Radiative transfer</subject><subject>Radio jets</subject><subject>Separation</subject><subject>Synchrotrons</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmNw5xgJjpQ1SZMmRzQYDA2BNJC4RWmabhmjLUmLgBPvwBvyJKQqggviYsv299vyD8A-io8JT9IRooRHCaHpSGnG8nwDDH5am2AQx3ESMZLeb4Md71ddiYUYgGZaPhvf2IVqbLmAzdLAU-sfPt8_Lk0D541rddM6A20Jr3ga5q5qF0s4WbcvcG5q5YKuKrtxJ53Z0igHVZnDsXW6XYfipgrRvvXc9FEtjN8FW4Vae7P3nYfgbnJ2O76IZtfn0_HJLNJJQpsIaU0zI7DJEI0RxkYZRnRBTMpRIopUcZMyiklhOKNEY85URiilmWBMU6HJEBz0e2tXPbXhTbmqWleGkxIzlmIqBOeBintKu8p7ZwpZO_uo3KtEsey8lZ2RsjNS9t4GyVEvsVX9u_Mf_PAPXNUrKQiSSGIq67wgX3GsiVI</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Tsunetoe, Yuh</creator><creator>Mineshige, Shin</creator><creator>Kawashima, Tomohisa</creator><creator>Ohsuga, Ken</creator><creator>Akiyama, Kazunori</creator><creator>Takahashi, Hiroyuki R.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8527-0496</orcidid><orcidid>https://orcid.org/0000-0002-9475-4254</orcidid><orcidid>https://orcid.org/0000-0003-0114-5378</orcidid><orcidid>https://orcid.org/0000-0003-0213-7628</orcidid><orcidid>https://orcid.org/0000-0002-2309-3639</orcidid></search><sort><creationdate>20220501</creationdate><title>Investigating the Disk–Jet Structure in M87 through Flux Separation in the Linear and Circular Polarization Images</title><author>Tsunetoe, Yuh ; Mineshige, Shin ; Kawashima, Tomohisa ; Ohsuga, Ken ; Akiyama, Kazunori ; Takahashi, Hiroyuki R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-1cc5be92eb150122eae63cf3e78149f7a8e76523fe8653c286ab3555b966c59c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active galactic nuclei</topic><topic>Astrophysics</topic><topic>Black hole physics</topic><topic>Black holes</topic><topic>Circular polarization</topic><topic>Dense plasmas</topic><topic>Deposition</topic><topic>Electron energy</topic><topic>Elliptical galaxies</topic><topic>Faraday effect</topic><topic>Fluctuations</topic><topic>Inclination angle</topic><topic>Linear polarization</topic><topic>Magnetohydrodynamics</topic><topic>Photosphere</topic><topic>Plasmas (physics)</topic><topic>Polarimetry</topic><topic>Polarization</topic><topic>Radiative transfer</topic><topic>Radio jets</topic><topic>Separation</topic><topic>Synchrotrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsunetoe, Yuh</creatorcontrib><creatorcontrib>Mineshige, Shin</creatorcontrib><creatorcontrib>Kawashima, Tomohisa</creatorcontrib><creatorcontrib>Ohsuga, Ken</creatorcontrib><creatorcontrib>Akiyama, Kazunori</creatorcontrib><creatorcontrib>Takahashi, Hiroyuki R.</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsunetoe, Yuh</au><au>Mineshige, Shin</au><au>Kawashima, Tomohisa</au><au>Ohsuga, Ken</au><au>Akiyama, Kazunori</au><au>Takahashi, Hiroyuki R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the Disk–Jet Structure in M87 through Flux Separation in the Linear and Circular Polarization Images</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>931</volume><issue>1</issue><spage>25</spage><pages>25-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>For testing different electron temperature (
T
e
) prescriptions in general relativistic magnetohydrodynamics (GRMHD) simulations through observations, we propose to utilize linear polarization (LP) and circular polarization (CP) images. We calculate the polarization images based on a semi-magnetically arrested disk GRMHD model for various
T
e
parameters, bearing M87 in mind. We find an LP–CP separation in the images of the low-
T
e
disk cases at 230GHz; namely, the LP flux mainly originates from downstream of the jet, and the CP flux comes from the counter-side jet, while the total intensity is maximum at the jet base. This can be understood as follows: although the LP flux is generated through synchrotron emission widely around the black hole, most of the LP flux from the jet base does not reach the observer, since it undergoes Faraday rotation (
∝
T
e
−
2
) when passing through the outer cold disk and is thus depolarized. Hence, only the LP flux from the downstream (not passing the cold dense plasmas) can survive. Meanwhile, the CP flux is generated from the LP flux by Faraday conversion ( ∝
T
e
) in the inner hot region. Stronger CP flux is thus observed from the counter-side jet. Moreover, the LP–CP separation is more enhanced at a lower frequency, such as 86 GHz, but is rather weak at 43 GHz, since the media in the latter case is optically thick for synchrotron self-absorption so that all of the fluxes should come from the photosphere. The same is true for cases with higher mass accretion rates and/or larger inclination angles.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac66dd</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-8527-0496</orcidid><orcidid>https://orcid.org/0000-0002-9475-4254</orcidid><orcidid>https://orcid.org/0000-0003-0114-5378</orcidid><orcidid>https://orcid.org/0000-0003-0213-7628</orcidid><orcidid>https://orcid.org/0000-0002-2309-3639</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2022-05, Vol.931 (1), p.25 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_ac66dd |
source | EZB Electronic Journals Library |
subjects | Active galactic nuclei Astrophysics Black hole physics Black holes Circular polarization Dense plasmas Deposition Electron energy Elliptical galaxies Faraday effect Fluctuations Inclination angle Linear polarization Magnetohydrodynamics Photosphere Plasmas (physics) Polarimetry Polarization Radiative transfer Radio jets Separation Synchrotrons |
title | Investigating the Disk–Jet Structure in M87 through Flux Separation in the Linear and Circular Polarization Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20Disk%E2%80%93Jet%20Structure%20in%20M87%20through%20Flux%20Separation%20in%20the%20Linear%20and%20Circular%20Polarization%20Images&rft.jtitle=The%20Astrophysical%20journal&rft.au=Tsunetoe,%20Yuh&rft.date=2022-05-01&rft.volume=931&rft.issue=1&rft.spage=25&rft.pages=25-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac66dd&rft_dat=%3Cproquest_cross%3E2667259988%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-1cc5be92eb150122eae63cf3e78149f7a8e76523fe8653c286ab3555b966c59c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2667259988&rft_id=info:pmid/&rfr_iscdi=true |