Loading…

Investigating the Disk–Jet Structure in M87 through Flux Separation in the Linear and Circular Polarization Images

For testing different electron temperature ( T e ) prescriptions in general relativistic magnetohydrodynamics (GRMHD) simulations through observations, we propose to utilize linear polarization (LP) and circular polarization (CP) images. We calculate the polarization images based on a semi-magnetica...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2022-05, Vol.931 (1), p.25
Main Authors: Tsunetoe, Yuh, Mineshige, Shin, Kawashima, Tomohisa, Ohsuga, Ken, Akiyama, Kazunori, Takahashi, Hiroyuki R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c445t-1cc5be92eb150122eae63cf3e78149f7a8e76523fe8653c286ab3555b966c59c3
cites cdi_FETCH-LOGICAL-c445t-1cc5be92eb150122eae63cf3e78149f7a8e76523fe8653c286ab3555b966c59c3
container_end_page
container_issue 1
container_start_page 25
container_title The Astrophysical journal
container_volume 931
creator Tsunetoe, Yuh
Mineshige, Shin
Kawashima, Tomohisa
Ohsuga, Ken
Akiyama, Kazunori
Takahashi, Hiroyuki R.
description For testing different electron temperature ( T e ) prescriptions in general relativistic magnetohydrodynamics (GRMHD) simulations through observations, we propose to utilize linear polarization (LP) and circular polarization (CP) images. We calculate the polarization images based on a semi-magnetically arrested disk GRMHD model for various T e parameters, bearing M87 in mind. We find an LP–CP separation in the images of the low- T e disk cases at 230GHz; namely, the LP flux mainly originates from downstream of the jet, and the CP flux comes from the counter-side jet, while the total intensity is maximum at the jet base. This can be understood as follows: although the LP flux is generated through synchrotron emission widely around the black hole, most of the LP flux from the jet base does not reach the observer, since it undergoes Faraday rotation ( ∝ T e − 2 ) when passing through the outer cold disk and is thus depolarized. Hence, only the LP flux from the downstream (not passing the cold dense plasmas) can survive. Meanwhile, the CP flux is generated from the LP flux by Faraday conversion ( ∝ T e ) in the inner hot region. Stronger CP flux is thus observed from the counter-side jet. Moreover, the LP–CP separation is more enhanced at a lower frequency, such as 86 GHz, but is rather weak at 43 GHz, since the media in the latter case is optically thick for synchrotron self-absorption so that all of the fluxes should come from the photosphere. The same is true for cases with higher mass accretion rates and/or larger inclination angles.
doi_str_mv 10.3847/1538-4357/ac66dd
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ac66dd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667259988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-1cc5be92eb150122eae63cf3e78149f7a8e76523fe8653c286ab3555b966c59c3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmNw5xgJjpQ1SZMmRzQYDA2BNJC4RWmabhmjLUmLgBPvwBvyJKQqggviYsv299vyD8A-io8JT9IRooRHCaHpSGnG8nwDDH5am2AQx3ESMZLeb4Md71ddiYUYgGZaPhvf2IVqbLmAzdLAU-sfPt8_Lk0D541rddM6A20Jr3ga5q5qF0s4WbcvcG5q5YKuKrtxJ53Z0igHVZnDsXW6XYfipgrRvvXc9FEtjN8FW4Vae7P3nYfgbnJ2O76IZtfn0_HJLNJJQpsIaU0zI7DJEI0RxkYZRnRBTMpRIopUcZMyiklhOKNEY85URiilmWBMU6HJEBz0e2tXPbXhTbmqWleGkxIzlmIqBOeBintKu8p7ZwpZO_uo3KtEsey8lZ2RsjNS9t4GyVEvsVX9u_Mf_PAPXNUrKQiSSGIq67wgX3GsiVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667259988</pqid></control><display><type>article</type><title>Investigating the Disk–Jet Structure in M87 through Flux Separation in the Linear and Circular Polarization Images</title><source>EZB Electronic Journals Library</source><creator>Tsunetoe, Yuh ; Mineshige, Shin ; Kawashima, Tomohisa ; Ohsuga, Ken ; Akiyama, Kazunori ; Takahashi, Hiroyuki R.</creator><creatorcontrib>Tsunetoe, Yuh ; Mineshige, Shin ; Kawashima, Tomohisa ; Ohsuga, Ken ; Akiyama, Kazunori ; Takahashi, Hiroyuki R.</creatorcontrib><description>For testing different electron temperature ( T e ) prescriptions in general relativistic magnetohydrodynamics (GRMHD) simulations through observations, we propose to utilize linear polarization (LP) and circular polarization (CP) images. We calculate the polarization images based on a semi-magnetically arrested disk GRMHD model for various T e parameters, bearing M87 in mind. We find an LP–CP separation in the images of the low- T e disk cases at 230GHz; namely, the LP flux mainly originates from downstream of the jet, and the CP flux comes from the counter-side jet, while the total intensity is maximum at the jet base. This can be understood as follows: although the LP flux is generated through synchrotron emission widely around the black hole, most of the LP flux from the jet base does not reach the observer, since it undergoes Faraday rotation ( ∝ T e − 2 ) when passing through the outer cold disk and is thus depolarized. Hence, only the LP flux from the downstream (not passing the cold dense plasmas) can survive. Meanwhile, the CP flux is generated from the LP flux by Faraday conversion ( ∝ T e ) in the inner hot region. Stronger CP flux is thus observed from the counter-side jet. Moreover, the LP–CP separation is more enhanced at a lower frequency, such as 86 GHz, but is rather weak at 43 GHz, since the media in the latter case is optically thick for synchrotron self-absorption so that all of the fluxes should come from the photosphere. The same is true for cases with higher mass accretion rates and/or larger inclination angles.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac66dd</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Active galactic nuclei ; Astrophysics ; Black hole physics ; Black holes ; Circular polarization ; Dense plasmas ; Deposition ; Electron energy ; Elliptical galaxies ; Faraday effect ; Fluctuations ; Inclination angle ; Linear polarization ; Magnetohydrodynamics ; Photosphere ; Plasmas (physics) ; Polarimetry ; Polarization ; Radiative transfer ; Radio jets ; Separation ; Synchrotrons</subject><ispartof>The Astrophysical journal, 2022-05, Vol.931 (1), p.25</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-1cc5be92eb150122eae63cf3e78149f7a8e76523fe8653c286ab3555b966c59c3</citedby><cites>FETCH-LOGICAL-c445t-1cc5be92eb150122eae63cf3e78149f7a8e76523fe8653c286ab3555b966c59c3</cites><orcidid>0000-0001-8527-0496 ; 0000-0002-9475-4254 ; 0000-0003-0114-5378 ; 0000-0003-0213-7628 ; 0000-0002-2309-3639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tsunetoe, Yuh</creatorcontrib><creatorcontrib>Mineshige, Shin</creatorcontrib><creatorcontrib>Kawashima, Tomohisa</creatorcontrib><creatorcontrib>Ohsuga, Ken</creatorcontrib><creatorcontrib>Akiyama, Kazunori</creatorcontrib><creatorcontrib>Takahashi, Hiroyuki R.</creatorcontrib><title>Investigating the Disk–Jet Structure in M87 through Flux Separation in the Linear and Circular Polarization Images</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>For testing different electron temperature ( T e ) prescriptions in general relativistic magnetohydrodynamics (GRMHD) simulations through observations, we propose to utilize linear polarization (LP) and circular polarization (CP) images. We calculate the polarization images based on a semi-magnetically arrested disk GRMHD model for various T e parameters, bearing M87 in mind. We find an LP–CP separation in the images of the low- T e disk cases at 230GHz; namely, the LP flux mainly originates from downstream of the jet, and the CP flux comes from the counter-side jet, while the total intensity is maximum at the jet base. This can be understood as follows: although the LP flux is generated through synchrotron emission widely around the black hole, most of the LP flux from the jet base does not reach the observer, since it undergoes Faraday rotation ( ∝ T e − 2 ) when passing through the outer cold disk and is thus depolarized. Hence, only the LP flux from the downstream (not passing the cold dense plasmas) can survive. Meanwhile, the CP flux is generated from the LP flux by Faraday conversion ( ∝ T e ) in the inner hot region. Stronger CP flux is thus observed from the counter-side jet. Moreover, the LP–CP separation is more enhanced at a lower frequency, such as 86 GHz, but is rather weak at 43 GHz, since the media in the latter case is optically thick for synchrotron self-absorption so that all of the fluxes should come from the photosphere. The same is true for cases with higher mass accretion rates and/or larger inclination angles.</description><subject>Active galactic nuclei</subject><subject>Astrophysics</subject><subject>Black hole physics</subject><subject>Black holes</subject><subject>Circular polarization</subject><subject>Dense plasmas</subject><subject>Deposition</subject><subject>Electron energy</subject><subject>Elliptical galaxies</subject><subject>Faraday effect</subject><subject>Fluctuations</subject><subject>Inclination angle</subject><subject>Linear polarization</subject><subject>Magnetohydrodynamics</subject><subject>Photosphere</subject><subject>Plasmas (physics)</subject><subject>Polarimetry</subject><subject>Polarization</subject><subject>Radiative transfer</subject><subject>Radio jets</subject><subject>Separation</subject><subject>Synchrotrons</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmNw5xgJjpQ1SZMmRzQYDA2BNJC4RWmabhmjLUmLgBPvwBvyJKQqggviYsv299vyD8A-io8JT9IRooRHCaHpSGnG8nwDDH5am2AQx3ESMZLeb4Md71ddiYUYgGZaPhvf2IVqbLmAzdLAU-sfPt8_Lk0D541rddM6A20Jr3ga5q5qF0s4WbcvcG5q5YKuKrtxJ53Z0igHVZnDsXW6XYfipgrRvvXc9FEtjN8FW4Vae7P3nYfgbnJ2O76IZtfn0_HJLNJJQpsIaU0zI7DJEI0RxkYZRnRBTMpRIopUcZMyiklhOKNEY85URiilmWBMU6HJEBz0e2tXPbXhTbmqWleGkxIzlmIqBOeBintKu8p7ZwpZO_uo3KtEsey8lZ2RsjNS9t4GyVEvsVX9u_Mf_PAPXNUrKQiSSGIq67wgX3GsiVI</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Tsunetoe, Yuh</creator><creator>Mineshige, Shin</creator><creator>Kawashima, Tomohisa</creator><creator>Ohsuga, Ken</creator><creator>Akiyama, Kazunori</creator><creator>Takahashi, Hiroyuki R.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8527-0496</orcidid><orcidid>https://orcid.org/0000-0002-9475-4254</orcidid><orcidid>https://orcid.org/0000-0003-0114-5378</orcidid><orcidid>https://orcid.org/0000-0003-0213-7628</orcidid><orcidid>https://orcid.org/0000-0002-2309-3639</orcidid></search><sort><creationdate>20220501</creationdate><title>Investigating the Disk–Jet Structure in M87 through Flux Separation in the Linear and Circular Polarization Images</title><author>Tsunetoe, Yuh ; Mineshige, Shin ; Kawashima, Tomohisa ; Ohsuga, Ken ; Akiyama, Kazunori ; Takahashi, Hiroyuki R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-1cc5be92eb150122eae63cf3e78149f7a8e76523fe8653c286ab3555b966c59c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active galactic nuclei</topic><topic>Astrophysics</topic><topic>Black hole physics</topic><topic>Black holes</topic><topic>Circular polarization</topic><topic>Dense plasmas</topic><topic>Deposition</topic><topic>Electron energy</topic><topic>Elliptical galaxies</topic><topic>Faraday effect</topic><topic>Fluctuations</topic><topic>Inclination angle</topic><topic>Linear polarization</topic><topic>Magnetohydrodynamics</topic><topic>Photosphere</topic><topic>Plasmas (physics)</topic><topic>Polarimetry</topic><topic>Polarization</topic><topic>Radiative transfer</topic><topic>Radio jets</topic><topic>Separation</topic><topic>Synchrotrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsunetoe, Yuh</creatorcontrib><creatorcontrib>Mineshige, Shin</creatorcontrib><creatorcontrib>Kawashima, Tomohisa</creatorcontrib><creatorcontrib>Ohsuga, Ken</creatorcontrib><creatorcontrib>Akiyama, Kazunori</creatorcontrib><creatorcontrib>Takahashi, Hiroyuki R.</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsunetoe, Yuh</au><au>Mineshige, Shin</au><au>Kawashima, Tomohisa</au><au>Ohsuga, Ken</au><au>Akiyama, Kazunori</au><au>Takahashi, Hiroyuki R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the Disk–Jet Structure in M87 through Flux Separation in the Linear and Circular Polarization Images</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>931</volume><issue>1</issue><spage>25</spage><pages>25-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>For testing different electron temperature ( T e ) prescriptions in general relativistic magnetohydrodynamics (GRMHD) simulations through observations, we propose to utilize linear polarization (LP) and circular polarization (CP) images. We calculate the polarization images based on a semi-magnetically arrested disk GRMHD model for various T e parameters, bearing M87 in mind. We find an LP–CP separation in the images of the low- T e disk cases at 230GHz; namely, the LP flux mainly originates from downstream of the jet, and the CP flux comes from the counter-side jet, while the total intensity is maximum at the jet base. This can be understood as follows: although the LP flux is generated through synchrotron emission widely around the black hole, most of the LP flux from the jet base does not reach the observer, since it undergoes Faraday rotation ( ∝ T e − 2 ) when passing through the outer cold disk and is thus depolarized. Hence, only the LP flux from the downstream (not passing the cold dense plasmas) can survive. Meanwhile, the CP flux is generated from the LP flux by Faraday conversion ( ∝ T e ) in the inner hot region. Stronger CP flux is thus observed from the counter-side jet. Moreover, the LP–CP separation is more enhanced at a lower frequency, such as 86 GHz, but is rather weak at 43 GHz, since the media in the latter case is optically thick for synchrotron self-absorption so that all of the fluxes should come from the photosphere. The same is true for cases with higher mass accretion rates and/or larger inclination angles.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac66dd</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-8527-0496</orcidid><orcidid>https://orcid.org/0000-0002-9475-4254</orcidid><orcidid>https://orcid.org/0000-0003-0114-5378</orcidid><orcidid>https://orcid.org/0000-0003-0213-7628</orcidid><orcidid>https://orcid.org/0000-0002-2309-3639</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2022-05, Vol.931 (1), p.25
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ac66dd
source EZB Electronic Journals Library
subjects Active galactic nuclei
Astrophysics
Black hole physics
Black holes
Circular polarization
Dense plasmas
Deposition
Electron energy
Elliptical galaxies
Faraday effect
Fluctuations
Inclination angle
Linear polarization
Magnetohydrodynamics
Photosphere
Plasmas (physics)
Polarimetry
Polarization
Radiative transfer
Radio jets
Separation
Synchrotrons
title Investigating the Disk–Jet Structure in M87 through Flux Separation in the Linear and Circular Polarization Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20Disk%E2%80%93Jet%20Structure%20in%20M87%20through%20Flux%20Separation%20in%20the%20Linear%20and%20Circular%20Polarization%20Images&rft.jtitle=The%20Astrophysical%20journal&rft.au=Tsunetoe,%20Yuh&rft.date=2022-05-01&rft.volume=931&rft.issue=1&rft.spage=25&rft.pages=25-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac66dd&rft_dat=%3Cproquest_cross%3E2667259988%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-1cc5be92eb150122eae63cf3e78149f7a8e76523fe8653c286ab3555b966c59c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2667259988&rft_id=info:pmid/&rfr_iscdi=true