Loading…

Turbulence and Accretion: A High-resolution Study of the B5 Filaments

High-resolution observations of the Perseus B5 “core” have previously revealed that this subsonic region actually consists of several filaments that are likely in the process of forming a quadruple stellar system. Since subsonic filaments are thought to be produced at the ∼0.1 pc sonic scale by turb...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2022-08, Vol.935 (1), p.57
Main Authors: Chen, Michael Chun-Yuan, Di Francesco, James, Pineda, Jaime E., Offner, Stella S. R., Friesen, Rachel K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-resolution observations of the Perseus B5 “core” have previously revealed that this subsonic region actually consists of several filaments that are likely in the process of forming a quadruple stellar system. Since subsonic filaments are thought to be produced at the ∼0.1 pc sonic scale by turbulent compression, a detailed kinematic study is crucial to test such a scenario in the context of core and star formation. Here we present a detailed kinematic follow-up study of the B5 filaments at a 0.009 pc resolution using the VLA and GBT combined observations fitted with multicomponent spectral models. Using precisely identified filament spines, we find a remarkable resemblance between the averaged width profiles of each filament and Plummer-like functions, with filaments possessing FWHM widths of ∼0.03 pc. The velocity dispersion profiles of the filaments also show decreasing trends toward the filament spines. Moreover, the velocity gradient field in B5 appears to be locally well ordered (∼0.04 pc) but globally complex, with kinematic behaviors suggestive of inhomogeneous turbulent accretion onto filaments and longitudinal flows toward a local overdensity along one of the filaments.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ac7d4a