Loading…
Solar Eruptions Triggered by Flux Emergence below or near a Coronal Flux Rope
Observations have shown a clear association of filament/prominence eruptions with the emergence of magnetic flux in or near filament channels. Magnetohydrodynamic (MHD) simulations have been employed to systematically study the conditions under which such eruptions occur. These simulations to date h...
Saved in:
Published in: | The Astrophysical journal 2024-02, Vol.962 (2), p.149 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c399t-1d6273231d03dc0fdf8c2b9703ee3f17349c4f7cc1caf325fe2ac9ab534eec6f3 |
container_end_page | |
container_issue | 2 |
container_start_page | 149 |
container_title | The Astrophysical journal |
container_volume | 962 |
creator | Török, T. Linton, M. G. Leake, J. E. Mikić, Z. Lionello, R. Titov, V. S. Downs, C. |
description | Observations have shown a clear association of filament/prominence eruptions with the emergence of magnetic flux in or near filament channels. Magnetohydrodynamic (MHD) simulations have been employed to systematically study the conditions under which such eruptions occur. These simulations to date have modeled filament channels as 2D flux ropes or 3D uniformly sheared arcades. Here we present MHD simulations of flux emergence into a more realistic configuration consisting of a bipolar active region containing a line-tied 3D flux rope. We use the coronal flux-rope model of Titov et al. as the initial condition and drive our simulations by imposing boundary conditions extracted from a flux emergence simulation by Leake et al. We identify three mechanisms that determine the evolution of the system: (i) reconnection displacing footpoints of field lines overlying the coronal flux rope, (ii) changes of the ambient field due to the intrusion of new flux at the boundary, and (iii) interaction of the (axial) electric currents in the preexisting and newly emerging flux systems. The relative contributions and effects of these mechanisms depend on the properties of the preexisting and emerging flux systems. Here we focus on the location and orientation of the emerging flux relative to the coronal flux rope. Varying these parameters, we investigate under which conditions an eruption of the latter is triggered. |
doi_str_mv | 10.3847/1538-4357/ad1826 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ad1826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9906d060d5064f439832835f2f8a3fcd</doaj_id><sourcerecordid>2927463184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-1d6273231d03dc0fdf8c2b9703ee3f17349c4f7cc1caf325fe2ac9ab534eec6f3</originalsourceid><addsrcrecordid>eNp9kc1LAzEQxYMoWKt3jwHx5mqSyWY3RymtChXBD_AW0mRStmybNdui_e_duqIX8TTM8HtvmDeEnHJ2CaUsrngOZSYhL66s56VQe2TwM9onA8aYzBQUr4fkqG0Xu1ZoPSD3T7G2iY7TpllXcdXS51TN55jQ09mWTurNBx0vMc1x5ZDOsI7vNCa6wk5j6SimuLJ1jz3GBo_JQbB1iyffdUheJuPn0W02fbi5G11PMwdarzPulShAAPcMvGPBh9KJmS4YIELgBUjtZCic484GEHlAYZ22sxwkolMBhuSu9_XRLkyTqqVNWxNtZb4GMc2NTevK1Wi0ZsozxXzOlAwSdAmihDyIUFoIzndeZ71Xk-LbBtu1WcRN6s5qjdCikAp4KTuK9ZRLsW0Thp-tnJndA8wubbNL2_QP6CQXvaSKza_nP_j5H7htFkYrYYThUpvGB_gE84OSAA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927463184</pqid></control><display><type>article</type><title>Solar Eruptions Triggered by Flux Emergence below or near a Coronal Flux Rope</title><source>EZB Electronic Journals Library</source><creator>Török, T. ; Linton, M. G. ; Leake, J. E. ; Mikić, Z. ; Lionello, R. ; Titov, V. S. ; Downs, C.</creator><creatorcontrib>Török, T. ; Linton, M. G. ; Leake, J. E. ; Mikić, Z. ; Lionello, R. ; Titov, V. S. ; Downs, C.</creatorcontrib><description>Observations have shown a clear association of filament/prominence eruptions with the emergence of magnetic flux in or near filament channels. Magnetohydrodynamic (MHD) simulations have been employed to systematically study the conditions under which such eruptions occur. These simulations to date have modeled filament channels as 2D flux ropes or 3D uniformly sheared arcades. Here we present MHD simulations of flux emergence into a more realistic configuration consisting of a bipolar active region containing a line-tied 3D flux rope. We use the coronal flux-rope model of Titov et al. as the initial condition and drive our simulations by imposing boundary conditions extracted from a flux emergence simulation by Leake et al. We identify three mechanisms that determine the evolution of the system: (i) reconnection displacing footpoints of field lines overlying the coronal flux rope, (ii) changes of the ambient field due to the intrusion of new flux at the boundary, and (iii) interaction of the (axial) electric currents in the preexisting and newly emerging flux systems. The relative contributions and effects of these mechanisms depend on the properties of the preexisting and emerging flux systems. Here we focus on the location and orientation of the emerging flux relative to the coronal flux rope. Varying these parameters, we investigate under which conditions an eruption of the latter is triggered.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad1826</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Boundary conditions ; Channels ; Electric currents ; Fluctuations ; Magnetic flux ; Magnetohydrodynamic simulation ; Magnetohydrodynamics ; Simulation ; Solar coronal mass ejections ; Solar magnetic fields ; Solar magnetic flux emergence ; Solar physics</subject><ispartof>The Astrophysical journal, 2024-02, Vol.962 (2), p.149</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-1d6273231d03dc0fdf8c2b9703ee3f17349c4f7cc1caf325fe2ac9ab534eec6f3</cites><orcidid>0000-0001-7053-4081 ; 0000-0003-1759-4354 ; 0000-0001-9231-045X ; 0000-0003-3843-3242 ; 0000-0002-3164-930X ; 0000-0002-4459-7510 ; 0000-0003-0072-4634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Török, T.</creatorcontrib><creatorcontrib>Linton, M. G.</creatorcontrib><creatorcontrib>Leake, J. E.</creatorcontrib><creatorcontrib>Mikić, Z.</creatorcontrib><creatorcontrib>Lionello, R.</creatorcontrib><creatorcontrib>Titov, V. S.</creatorcontrib><creatorcontrib>Downs, C.</creatorcontrib><title>Solar Eruptions Triggered by Flux Emergence below or near a Coronal Flux Rope</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Observations have shown a clear association of filament/prominence eruptions with the emergence of magnetic flux in or near filament channels. Magnetohydrodynamic (MHD) simulations have been employed to systematically study the conditions under which such eruptions occur. These simulations to date have modeled filament channels as 2D flux ropes or 3D uniformly sheared arcades. Here we present MHD simulations of flux emergence into a more realistic configuration consisting of a bipolar active region containing a line-tied 3D flux rope. We use the coronal flux-rope model of Titov et al. as the initial condition and drive our simulations by imposing boundary conditions extracted from a flux emergence simulation by Leake et al. We identify three mechanisms that determine the evolution of the system: (i) reconnection displacing footpoints of field lines overlying the coronal flux rope, (ii) changes of the ambient field due to the intrusion of new flux at the boundary, and (iii) interaction of the (axial) electric currents in the preexisting and newly emerging flux systems. The relative contributions and effects of these mechanisms depend on the properties of the preexisting and emerging flux systems. Here we focus on the location and orientation of the emerging flux relative to the coronal flux rope. Varying these parameters, we investigate under which conditions an eruption of the latter is triggered.</description><subject>Boundary conditions</subject><subject>Channels</subject><subject>Electric currents</subject><subject>Fluctuations</subject><subject>Magnetic flux</subject><subject>Magnetohydrodynamic simulation</subject><subject>Magnetohydrodynamics</subject><subject>Simulation</subject><subject>Solar coronal mass ejections</subject><subject>Solar magnetic fields</subject><subject>Solar magnetic flux emergence</subject><subject>Solar physics</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc1LAzEQxYMoWKt3jwHx5mqSyWY3RymtChXBD_AW0mRStmybNdui_e_duqIX8TTM8HtvmDeEnHJ2CaUsrngOZSYhL66s56VQe2TwM9onA8aYzBQUr4fkqG0Xu1ZoPSD3T7G2iY7TpllXcdXS51TN55jQ09mWTurNBx0vMc1x5ZDOsI7vNCa6wk5j6SimuLJ1jz3GBo_JQbB1iyffdUheJuPn0W02fbi5G11PMwdarzPulShAAPcMvGPBh9KJmS4YIELgBUjtZCic484GEHlAYZ22sxwkolMBhuSu9_XRLkyTqqVNWxNtZb4GMc2NTevK1Wi0ZsozxXzOlAwSdAmihDyIUFoIzndeZ71Xk-LbBtu1WcRN6s5qjdCikAp4KTuK9ZRLsW0Thp-tnJndA8wubbNL2_QP6CQXvaSKza_nP_j5H7htFkYrYYThUpvGB_gE84OSAA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Török, T.</creator><creator>Linton, M. G.</creator><creator>Leake, J. E.</creator><creator>Mikić, Z.</creator><creator>Lionello, R.</creator><creator>Titov, V. S.</creator><creator>Downs, C.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7053-4081</orcidid><orcidid>https://orcid.org/0000-0003-1759-4354</orcidid><orcidid>https://orcid.org/0000-0001-9231-045X</orcidid><orcidid>https://orcid.org/0000-0003-3843-3242</orcidid><orcidid>https://orcid.org/0000-0002-3164-930X</orcidid><orcidid>https://orcid.org/0000-0002-4459-7510</orcidid><orcidid>https://orcid.org/0000-0003-0072-4634</orcidid></search><sort><creationdate>20240201</creationdate><title>Solar Eruptions Triggered by Flux Emergence below or near a Coronal Flux Rope</title><author>Török, T. ; Linton, M. G. ; Leake, J. E. ; Mikić, Z. ; Lionello, R. ; Titov, V. S. ; Downs, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-1d6273231d03dc0fdf8c2b9703ee3f17349c4f7cc1caf325fe2ac9ab534eec6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Channels</topic><topic>Electric currents</topic><topic>Fluctuations</topic><topic>Magnetic flux</topic><topic>Magnetohydrodynamic simulation</topic><topic>Magnetohydrodynamics</topic><topic>Simulation</topic><topic>Solar coronal mass ejections</topic><topic>Solar magnetic fields</topic><topic>Solar magnetic flux emergence</topic><topic>Solar physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Török, T.</creatorcontrib><creatorcontrib>Linton, M. G.</creatorcontrib><creatorcontrib>Leake, J. E.</creatorcontrib><creatorcontrib>Mikić, Z.</creatorcontrib><creatorcontrib>Lionello, R.</creatorcontrib><creatorcontrib>Titov, V. S.</creatorcontrib><creatorcontrib>Downs, C.</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Török, T.</au><au>Linton, M. G.</au><au>Leake, J. E.</au><au>Mikić, Z.</au><au>Lionello, R.</au><au>Titov, V. S.</au><au>Downs, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar Eruptions Triggered by Flux Emergence below or near a Coronal Flux Rope</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>962</volume><issue>2</issue><spage>149</spage><pages>149-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Observations have shown a clear association of filament/prominence eruptions with the emergence of magnetic flux in or near filament channels. Magnetohydrodynamic (MHD) simulations have been employed to systematically study the conditions under which such eruptions occur. These simulations to date have modeled filament channels as 2D flux ropes or 3D uniformly sheared arcades. Here we present MHD simulations of flux emergence into a more realistic configuration consisting of a bipolar active region containing a line-tied 3D flux rope. We use the coronal flux-rope model of Titov et al. as the initial condition and drive our simulations by imposing boundary conditions extracted from a flux emergence simulation by Leake et al. We identify three mechanisms that determine the evolution of the system: (i) reconnection displacing footpoints of field lines overlying the coronal flux rope, (ii) changes of the ambient field due to the intrusion of new flux at the boundary, and (iii) interaction of the (axial) electric currents in the preexisting and newly emerging flux systems. The relative contributions and effects of these mechanisms depend on the properties of the preexisting and emerging flux systems. Here we focus on the location and orientation of the emerging flux relative to the coronal flux rope. Varying these parameters, we investigate under which conditions an eruption of the latter is triggered.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad1826</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7053-4081</orcidid><orcidid>https://orcid.org/0000-0003-1759-4354</orcidid><orcidid>https://orcid.org/0000-0001-9231-045X</orcidid><orcidid>https://orcid.org/0000-0003-3843-3242</orcidid><orcidid>https://orcid.org/0000-0002-3164-930X</orcidid><orcidid>https://orcid.org/0000-0002-4459-7510</orcidid><orcidid>https://orcid.org/0000-0003-0072-4634</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2024-02, Vol.962 (2), p.149 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_ad1826 |
source | EZB Electronic Journals Library |
subjects | Boundary conditions Channels Electric currents Fluctuations Magnetic flux Magnetohydrodynamic simulation Magnetohydrodynamics Simulation Solar coronal mass ejections Solar magnetic fields Solar magnetic flux emergence Solar physics |
title | Solar Eruptions Triggered by Flux Emergence below or near a Coronal Flux Rope |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20Eruptions%20Triggered%20by%20Flux%20Emergence%20below%20or%20near%20a%20Coronal%20Flux%20Rope&rft.jtitle=The%20Astrophysical%20journal&rft.au=T%C3%B6r%C3%B6k,%20T.&rft.date=2024-02-01&rft.volume=962&rft.issue=2&rft.spage=149&rft.pages=149-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad1826&rft_dat=%3Cproquest_cross%3E2927463184%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-1d6273231d03dc0fdf8c2b9703ee3f17349c4f7cc1caf325fe2ac9ab534eec6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2927463184&rft_id=info:pmid/&rfr_iscdi=true |