Loading…

Solar Eruptions Triggered by Flux Emergence below or near a Coronal Flux Rope

Observations have shown a clear association of filament/prominence eruptions with the emergence of magnetic flux in or near filament channels. Magnetohydrodynamic (MHD) simulations have been employed to systematically study the conditions under which such eruptions occur. These simulations to date h...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2024-02, Vol.962 (2), p.149
Main Authors: Török, T., Linton, M. G., Leake, J. E., Mikić, Z., Lionello, R., Titov, V. S., Downs, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c399t-1d6273231d03dc0fdf8c2b9703ee3f17349c4f7cc1caf325fe2ac9ab534eec6f3
container_end_page
container_issue 2
container_start_page 149
container_title The Astrophysical journal
container_volume 962
creator Török, T.
Linton, M. G.
Leake, J. E.
Mikić, Z.
Lionello, R.
Titov, V. S.
Downs, C.
description Observations have shown a clear association of filament/prominence eruptions with the emergence of magnetic flux in or near filament channels. Magnetohydrodynamic (MHD) simulations have been employed to systematically study the conditions under which such eruptions occur. These simulations to date have modeled filament channels as 2D flux ropes or 3D uniformly sheared arcades. Here we present MHD simulations of flux emergence into a more realistic configuration consisting of a bipolar active region containing a line-tied 3D flux rope. We use the coronal flux-rope model of Titov et al. as the initial condition and drive our simulations by imposing boundary conditions extracted from a flux emergence simulation by Leake et al. We identify three mechanisms that determine the evolution of the system: (i) reconnection displacing footpoints of field lines overlying the coronal flux rope, (ii) changes of the ambient field due to the intrusion of new flux at the boundary, and (iii) interaction of the (axial) electric currents in the preexisting and newly emerging flux systems. The relative contributions and effects of these mechanisms depend on the properties of the preexisting and emerging flux systems. Here we focus on the location and orientation of the emerging flux relative to the coronal flux rope. Varying these parameters, we investigate under which conditions an eruption of the latter is triggered.
doi_str_mv 10.3847/1538-4357/ad1826
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ad1826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9906d060d5064f439832835f2f8a3fcd</doaj_id><sourcerecordid>2927463184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-1d6273231d03dc0fdf8c2b9703ee3f17349c4f7cc1caf325fe2ac9ab534eec6f3</originalsourceid><addsrcrecordid>eNp9kc1LAzEQxYMoWKt3jwHx5mqSyWY3RymtChXBD_AW0mRStmybNdui_e_duqIX8TTM8HtvmDeEnHJ2CaUsrngOZSYhL66s56VQe2TwM9onA8aYzBQUr4fkqG0Xu1ZoPSD3T7G2iY7TpllXcdXS51TN55jQ09mWTurNBx0vMc1x5ZDOsI7vNCa6wk5j6SimuLJ1jz3GBo_JQbB1iyffdUheJuPn0W02fbi5G11PMwdarzPulShAAPcMvGPBh9KJmS4YIELgBUjtZCic484GEHlAYZ22sxwkolMBhuSu9_XRLkyTqqVNWxNtZb4GMc2NTevK1Wi0ZsozxXzOlAwSdAmihDyIUFoIzndeZ71Xk-LbBtu1WcRN6s5qjdCikAp4KTuK9ZRLsW0Thp-tnJndA8wubbNL2_QP6CQXvaSKza_nP_j5H7htFkYrYYThUpvGB_gE84OSAA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927463184</pqid></control><display><type>article</type><title>Solar Eruptions Triggered by Flux Emergence below or near a Coronal Flux Rope</title><source>EZB Electronic Journals Library</source><creator>Török, T. ; Linton, M. G. ; Leake, J. E. ; Mikić, Z. ; Lionello, R. ; Titov, V. S. ; Downs, C.</creator><creatorcontrib>Török, T. ; Linton, M. G. ; Leake, J. E. ; Mikić, Z. ; Lionello, R. ; Titov, V. S. ; Downs, C.</creatorcontrib><description>Observations have shown a clear association of filament/prominence eruptions with the emergence of magnetic flux in or near filament channels. Magnetohydrodynamic (MHD) simulations have been employed to systematically study the conditions under which such eruptions occur. These simulations to date have modeled filament channels as 2D flux ropes or 3D uniformly sheared arcades. Here we present MHD simulations of flux emergence into a more realistic configuration consisting of a bipolar active region containing a line-tied 3D flux rope. We use the coronal flux-rope model of Titov et al. as the initial condition and drive our simulations by imposing boundary conditions extracted from a flux emergence simulation by Leake et al. We identify three mechanisms that determine the evolution of the system: (i) reconnection displacing footpoints of field lines overlying the coronal flux rope, (ii) changes of the ambient field due to the intrusion of new flux at the boundary, and (iii) interaction of the (axial) electric currents in the preexisting and newly emerging flux systems. The relative contributions and effects of these mechanisms depend on the properties of the preexisting and emerging flux systems. Here we focus on the location and orientation of the emerging flux relative to the coronal flux rope. Varying these parameters, we investigate under which conditions an eruption of the latter is triggered.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad1826</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Boundary conditions ; Channels ; Electric currents ; Fluctuations ; Magnetic flux ; Magnetohydrodynamic simulation ; Magnetohydrodynamics ; Simulation ; Solar coronal mass ejections ; Solar magnetic fields ; Solar magnetic flux emergence ; Solar physics</subject><ispartof>The Astrophysical journal, 2024-02, Vol.962 (2), p.149</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-1d6273231d03dc0fdf8c2b9703ee3f17349c4f7cc1caf325fe2ac9ab534eec6f3</cites><orcidid>0000-0001-7053-4081 ; 0000-0003-1759-4354 ; 0000-0001-9231-045X ; 0000-0003-3843-3242 ; 0000-0002-3164-930X ; 0000-0002-4459-7510 ; 0000-0003-0072-4634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Török, T.</creatorcontrib><creatorcontrib>Linton, M. G.</creatorcontrib><creatorcontrib>Leake, J. E.</creatorcontrib><creatorcontrib>Mikić, Z.</creatorcontrib><creatorcontrib>Lionello, R.</creatorcontrib><creatorcontrib>Titov, V. S.</creatorcontrib><creatorcontrib>Downs, C.</creatorcontrib><title>Solar Eruptions Triggered by Flux Emergence below or near a Coronal Flux Rope</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Observations have shown a clear association of filament/prominence eruptions with the emergence of magnetic flux in or near filament channels. Magnetohydrodynamic (MHD) simulations have been employed to systematically study the conditions under which such eruptions occur. These simulations to date have modeled filament channels as 2D flux ropes or 3D uniformly sheared arcades. Here we present MHD simulations of flux emergence into a more realistic configuration consisting of a bipolar active region containing a line-tied 3D flux rope. We use the coronal flux-rope model of Titov et al. as the initial condition and drive our simulations by imposing boundary conditions extracted from a flux emergence simulation by Leake et al. We identify three mechanisms that determine the evolution of the system: (i) reconnection displacing footpoints of field lines overlying the coronal flux rope, (ii) changes of the ambient field due to the intrusion of new flux at the boundary, and (iii) interaction of the (axial) electric currents in the preexisting and newly emerging flux systems. The relative contributions and effects of these mechanisms depend on the properties of the preexisting and emerging flux systems. Here we focus on the location and orientation of the emerging flux relative to the coronal flux rope. Varying these parameters, we investigate under which conditions an eruption of the latter is triggered.</description><subject>Boundary conditions</subject><subject>Channels</subject><subject>Electric currents</subject><subject>Fluctuations</subject><subject>Magnetic flux</subject><subject>Magnetohydrodynamic simulation</subject><subject>Magnetohydrodynamics</subject><subject>Simulation</subject><subject>Solar coronal mass ejections</subject><subject>Solar magnetic fields</subject><subject>Solar magnetic flux emergence</subject><subject>Solar physics</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc1LAzEQxYMoWKt3jwHx5mqSyWY3RymtChXBD_AW0mRStmybNdui_e_duqIX8TTM8HtvmDeEnHJ2CaUsrngOZSYhL66s56VQe2TwM9onA8aYzBQUr4fkqG0Xu1ZoPSD3T7G2iY7TpllXcdXS51TN55jQ09mWTurNBx0vMc1x5ZDOsI7vNCa6wk5j6SimuLJ1jz3GBo_JQbB1iyffdUheJuPn0W02fbi5G11PMwdarzPulShAAPcMvGPBh9KJmS4YIELgBUjtZCic484GEHlAYZ22sxwkolMBhuSu9_XRLkyTqqVNWxNtZb4GMc2NTevK1Wi0ZsozxXzOlAwSdAmihDyIUFoIzndeZ71Xk-LbBtu1WcRN6s5qjdCikAp4KTuK9ZRLsW0Thp-tnJndA8wubbNL2_QP6CQXvaSKza_nP_j5H7htFkYrYYThUpvGB_gE84OSAA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Török, T.</creator><creator>Linton, M. G.</creator><creator>Leake, J. E.</creator><creator>Mikić, Z.</creator><creator>Lionello, R.</creator><creator>Titov, V. S.</creator><creator>Downs, C.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7053-4081</orcidid><orcidid>https://orcid.org/0000-0003-1759-4354</orcidid><orcidid>https://orcid.org/0000-0001-9231-045X</orcidid><orcidid>https://orcid.org/0000-0003-3843-3242</orcidid><orcidid>https://orcid.org/0000-0002-3164-930X</orcidid><orcidid>https://orcid.org/0000-0002-4459-7510</orcidid><orcidid>https://orcid.org/0000-0003-0072-4634</orcidid></search><sort><creationdate>20240201</creationdate><title>Solar Eruptions Triggered by Flux Emergence below or near a Coronal Flux Rope</title><author>Török, T. ; Linton, M. G. ; Leake, J. E. ; Mikić, Z. ; Lionello, R. ; Titov, V. S. ; Downs, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-1d6273231d03dc0fdf8c2b9703ee3f17349c4f7cc1caf325fe2ac9ab534eec6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Channels</topic><topic>Electric currents</topic><topic>Fluctuations</topic><topic>Magnetic flux</topic><topic>Magnetohydrodynamic simulation</topic><topic>Magnetohydrodynamics</topic><topic>Simulation</topic><topic>Solar coronal mass ejections</topic><topic>Solar magnetic fields</topic><topic>Solar magnetic flux emergence</topic><topic>Solar physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Török, T.</creatorcontrib><creatorcontrib>Linton, M. G.</creatorcontrib><creatorcontrib>Leake, J. E.</creatorcontrib><creatorcontrib>Mikić, Z.</creatorcontrib><creatorcontrib>Lionello, R.</creatorcontrib><creatorcontrib>Titov, V. S.</creatorcontrib><creatorcontrib>Downs, C.</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Török, T.</au><au>Linton, M. G.</au><au>Leake, J. E.</au><au>Mikić, Z.</au><au>Lionello, R.</au><au>Titov, V. S.</au><au>Downs, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar Eruptions Triggered by Flux Emergence below or near a Coronal Flux Rope</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>962</volume><issue>2</issue><spage>149</spage><pages>149-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Observations have shown a clear association of filament/prominence eruptions with the emergence of magnetic flux in or near filament channels. Magnetohydrodynamic (MHD) simulations have been employed to systematically study the conditions under which such eruptions occur. These simulations to date have modeled filament channels as 2D flux ropes or 3D uniformly sheared arcades. Here we present MHD simulations of flux emergence into a more realistic configuration consisting of a bipolar active region containing a line-tied 3D flux rope. We use the coronal flux-rope model of Titov et al. as the initial condition and drive our simulations by imposing boundary conditions extracted from a flux emergence simulation by Leake et al. We identify three mechanisms that determine the evolution of the system: (i) reconnection displacing footpoints of field lines overlying the coronal flux rope, (ii) changes of the ambient field due to the intrusion of new flux at the boundary, and (iii) interaction of the (axial) electric currents in the preexisting and newly emerging flux systems. The relative contributions and effects of these mechanisms depend on the properties of the preexisting and emerging flux systems. Here we focus on the location and orientation of the emerging flux relative to the coronal flux rope. Varying these parameters, we investigate under which conditions an eruption of the latter is triggered.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad1826</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7053-4081</orcidid><orcidid>https://orcid.org/0000-0003-1759-4354</orcidid><orcidid>https://orcid.org/0000-0001-9231-045X</orcidid><orcidid>https://orcid.org/0000-0003-3843-3242</orcidid><orcidid>https://orcid.org/0000-0002-3164-930X</orcidid><orcidid>https://orcid.org/0000-0002-4459-7510</orcidid><orcidid>https://orcid.org/0000-0003-0072-4634</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2024-02, Vol.962 (2), p.149
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ad1826
source EZB Electronic Journals Library
subjects Boundary conditions
Channels
Electric currents
Fluctuations
Magnetic flux
Magnetohydrodynamic simulation
Magnetohydrodynamics
Simulation
Solar coronal mass ejections
Solar magnetic fields
Solar magnetic flux emergence
Solar physics
title Solar Eruptions Triggered by Flux Emergence below or near a Coronal Flux Rope
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20Eruptions%20Triggered%20by%20Flux%20Emergence%20below%20or%20near%20a%20Coronal%20Flux%20Rope&rft.jtitle=The%20Astrophysical%20journal&rft.au=T%C3%B6r%C3%B6k,%20T.&rft.date=2024-02-01&rft.volume=962&rft.issue=2&rft.spage=149&rft.pages=149-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad1826&rft_dat=%3Cproquest_cross%3E2927463184%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-1d6273231d03dc0fdf8c2b9703ee3f17349c4f7cc1caf325fe2ac9ab534eec6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2927463184&rft_id=info:pmid/&rfr_iscdi=true