Loading…

First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR

We present a comprehensive analysis aimed at proving the hypothesis that a train of small-scale features observed by the Wide-field Imager (WISPR) onboard the Parker Solar Probe (PSP) are the signature of a Kelvin–Helmholtz instability (KHI). These features were seen near the flank of a Coronal Mass...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2024-04, Vol.964 (2), p.139
Main Authors: Paouris, Evangelos, Stenborg, Guillermo, Linton, Mark G., Vourlidas, Angelos, Howard, Russell A., Raouafi, Nour E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c399t-bdf708cf54385c11e18ecd15e07883b5193d6674d1924b8afd2dc6f687d022223
container_end_page
container_issue 2
container_start_page 139
container_title The Astrophysical journal
container_volume 964
creator Paouris, Evangelos
Stenborg, Guillermo
Linton, Mark G.
Vourlidas, Angelos
Howard, Russell A.
Raouafi, Nour E.
description We present a comprehensive analysis aimed at proving the hypothesis that a train of small-scale features observed by the Wide-field Imager (WISPR) onboard the Parker Solar Probe (PSP) are the signature of a Kelvin–Helmholtz instability (KHI). These features were seen near the flank of a Coronal Mass Ejection (CME) wake between 7.5 R ⊙ and 9.5 R ⊙ , lasting for about 30 minutes. The CME was a slow event, associated with a streamer blowout. We analyzed the size of the eddies and found growth during their evolution while maintaining separation distances and alignment typical of Kelvin–Helmholtz vortexes. We then assessed the magnetic field conditions that would make the observation of such an instability plausible. Two methods were used to cross-check our findings. The measured thickness of the boundary layer supports KHI candidacy, and the estimated linear growth rate suggests nonlinear saturation within the expected timescale. We conclude that a KHI is a plausible explanation for the observed features, and therefore that such instabilities might exist in the low and middle solar corona (within ∼15 R ⊙ ) and can be detected in white light observations. Their observation, however, might be rare due to stringent conditions like the observer’s proximity, suitable viewing circumstances, magnetic field topology, and flow properties. This study highlights the unique capability of PSP/WISPR in observing such phenomena, especially as PSP perihelia reach closer distances to the Sun.
doi_str_mv 10.3847/1538-4357/ad2208
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ad2208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7f5941199f2a4e86807b4a4df6f719ad</doaj_id><sourcerecordid>3006025866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-bdf708cf54385c11e18ecd15e07883b5193d6674d1924b8afd2dc6f687d022223</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWwZxkJsSPUr_ixRDwjkKgoCHaWE9vFVVoHJyCVFf_AH_IlpATBBmYzmqs7Z0YXgF0ED4mgfIQyIlJKMj7SBmMo1sDgR1oHAwghTRnhD5tgq2lmqxFLOQCnZz42bXLioy3bJJ_rqV9Mk-ASnVza6sUvPt7eL2w1fwxV-5rki6bVha98u0yKZTKejEf3-WR8sw02nK4au_Pdh-Du7PT2-CK9uj7Pj4-u0pJI2aaFcRyK0mWUiKxEyCJhS4MyC7kQpMiQJIYxTg2SmBZCO4NNyRwT3EDcFRmCvOeaoGeqjn6u41IF7dWXEOJU6dj6srKKu0xShKR0WFMrmIC8oJoaxxxHUpuOtdez6hienm3Tqll4jovufUUgZBBngrHOBXtXGUPTROt-riKoVsGrVcpqlbLqg-9W9vsVH-pfpq5nSjKqsEJEqtq4znfwh-9f7CeuM46o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3006025866</pqid></control><display><type>article</type><title>First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Paouris, Evangelos ; Stenborg, Guillermo ; Linton, Mark G. ; Vourlidas, Angelos ; Howard, Russell A. ; Raouafi, Nour E.</creator><creatorcontrib>Paouris, Evangelos ; Stenborg, Guillermo ; Linton, Mark G. ; Vourlidas, Angelos ; Howard, Russell A. ; Raouafi, Nour E.</creatorcontrib><description>We present a comprehensive analysis aimed at proving the hypothesis that a train of small-scale features observed by the Wide-field Imager (WISPR) onboard the Parker Solar Probe (PSP) are the signature of a Kelvin–Helmholtz instability (KHI). These features were seen near the flank of a Coronal Mass Ejection (CME) wake between 7.5 R ⊙ and 9.5 R ⊙ , lasting for about 30 minutes. The CME was a slow event, associated with a streamer blowout. We analyzed the size of the eddies and found growth during their evolution while maintaining separation distances and alignment typical of Kelvin–Helmholtz vortexes. We then assessed the magnetic field conditions that would make the observation of such an instability plausible. Two methods were used to cross-check our findings. The measured thickness of the boundary layer supports KHI candidacy, and the estimated linear growth rate suggests nonlinear saturation within the expected timescale. We conclude that a KHI is a plausible explanation for the observed features, and therefore that such instabilities might exist in the low and middle solar corona (within ∼15 R ⊙ ) and can be detected in white light observations. Their observation, however, might be rare due to stringent conditions like the observer’s proximity, suitable viewing circumstances, magnetic field topology, and flow properties. This study highlights the unique capability of PSP/WISPR in observing such phenomena, especially as PSP perihelia reach closer distances to the Sun.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad2208</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Boundary layers ; Corona ; Coronal mass ejection ; Eddies ; Heliosphere ; Instability ; Kelvin-Helmholtz instability ; Magnetic fields ; Magnetic properties ; Solar corona ; Solar coronal mass ejections ; Solar probes ; Solar wind ; Stability analysis ; The Sun ; Thickness measurement ; Topology ; White light</subject><ispartof>The Astrophysical journal, 2024-04, Vol.964 (2), p.139</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-bdf708cf54385c11e18ecd15e07883b5193d6674d1924b8afd2dc6f687d022223</cites><orcidid>0000-0001-9027-8249 ; 0000-0002-4459-7510 ; 0000-0002-8164-5948 ; 0000-0002-8387-5202 ; 0000-0001-8480-947X ; 0000-0003-2409-3742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Paouris, Evangelos</creatorcontrib><creatorcontrib>Stenborg, Guillermo</creatorcontrib><creatorcontrib>Linton, Mark G.</creatorcontrib><creatorcontrib>Vourlidas, Angelos</creatorcontrib><creatorcontrib>Howard, Russell A.</creatorcontrib><creatorcontrib>Raouafi, Nour E.</creatorcontrib><title>First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a comprehensive analysis aimed at proving the hypothesis that a train of small-scale features observed by the Wide-field Imager (WISPR) onboard the Parker Solar Probe (PSP) are the signature of a Kelvin–Helmholtz instability (KHI). These features were seen near the flank of a Coronal Mass Ejection (CME) wake between 7.5 R ⊙ and 9.5 R ⊙ , lasting for about 30 minutes. The CME was a slow event, associated with a streamer blowout. We analyzed the size of the eddies and found growth during their evolution while maintaining separation distances and alignment typical of Kelvin–Helmholtz vortexes. We then assessed the magnetic field conditions that would make the observation of such an instability plausible. Two methods were used to cross-check our findings. The measured thickness of the boundary layer supports KHI candidacy, and the estimated linear growth rate suggests nonlinear saturation within the expected timescale. We conclude that a KHI is a plausible explanation for the observed features, and therefore that such instabilities might exist in the low and middle solar corona (within ∼15 R ⊙ ) and can be detected in white light observations. Their observation, however, might be rare due to stringent conditions like the observer’s proximity, suitable viewing circumstances, magnetic field topology, and flow properties. This study highlights the unique capability of PSP/WISPR in observing such phenomena, especially as PSP perihelia reach closer distances to the Sun.</description><subject>Boundary layers</subject><subject>Corona</subject><subject>Coronal mass ejection</subject><subject>Eddies</subject><subject>Heliosphere</subject><subject>Instability</subject><subject>Kelvin-Helmholtz instability</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Solar corona</subject><subject>Solar coronal mass ejections</subject><subject>Solar probes</subject><subject>Solar wind</subject><subject>Stability analysis</subject><subject>The Sun</subject><subject>Thickness measurement</subject><subject>Topology</subject><subject>White light</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kMtOwzAQRS0EEqWwZxkJsSPUr_ixRDwjkKgoCHaWE9vFVVoHJyCVFf_AH_IlpATBBmYzmqs7Z0YXgF0ED4mgfIQyIlJKMj7SBmMo1sDgR1oHAwghTRnhD5tgq2lmqxFLOQCnZz42bXLioy3bJJ_rqV9Mk-ASnVza6sUvPt7eL2w1fwxV-5rki6bVha98u0yKZTKejEf3-WR8sw02nK4au_Pdh-Du7PT2-CK9uj7Pj4-u0pJI2aaFcRyK0mWUiKxEyCJhS4MyC7kQpMiQJIYxTg2SmBZCO4NNyRwT3EDcFRmCvOeaoGeqjn6u41IF7dWXEOJU6dj6srKKu0xShKR0WFMrmIC8oJoaxxxHUpuOtdez6hienm3Tqll4jovufUUgZBBngrHOBXtXGUPTROt-riKoVsGrVcpqlbLqg-9W9vsVH-pfpq5nSjKqsEJEqtq4znfwh-9f7CeuM46o</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Paouris, Evangelos</creator><creator>Stenborg, Guillermo</creator><creator>Linton, Mark G.</creator><creator>Vourlidas, Angelos</creator><creator>Howard, Russell A.</creator><creator>Raouafi, Nour E.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9027-8249</orcidid><orcidid>https://orcid.org/0000-0002-4459-7510</orcidid><orcidid>https://orcid.org/0000-0002-8164-5948</orcidid><orcidid>https://orcid.org/0000-0002-8387-5202</orcidid><orcidid>https://orcid.org/0000-0001-8480-947X</orcidid><orcidid>https://orcid.org/0000-0003-2409-3742</orcidid></search><sort><creationdate>20240401</creationdate><title>First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR</title><author>Paouris, Evangelos ; Stenborg, Guillermo ; Linton, Mark G. ; Vourlidas, Angelos ; Howard, Russell A. ; Raouafi, Nour E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-bdf708cf54385c11e18ecd15e07883b5193d6674d1924b8afd2dc6f687d022223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary layers</topic><topic>Corona</topic><topic>Coronal mass ejection</topic><topic>Eddies</topic><topic>Heliosphere</topic><topic>Instability</topic><topic>Kelvin-Helmholtz instability</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Solar corona</topic><topic>Solar coronal mass ejections</topic><topic>Solar probes</topic><topic>Solar wind</topic><topic>Stability analysis</topic><topic>The Sun</topic><topic>Thickness measurement</topic><topic>Topology</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paouris, Evangelos</creatorcontrib><creatorcontrib>Stenborg, Guillermo</creatorcontrib><creatorcontrib>Linton, Mark G.</creatorcontrib><creatorcontrib>Vourlidas, Angelos</creatorcontrib><creatorcontrib>Howard, Russell A.</creatorcontrib><creatorcontrib>Raouafi, Nour E.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paouris, Evangelos</au><au>Stenborg, Guillermo</au><au>Linton, Mark G.</au><au>Vourlidas, Angelos</au><au>Howard, Russell A.</au><au>Raouafi, Nour E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>964</volume><issue>2</issue><spage>139</spage><pages>139-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a comprehensive analysis aimed at proving the hypothesis that a train of small-scale features observed by the Wide-field Imager (WISPR) onboard the Parker Solar Probe (PSP) are the signature of a Kelvin–Helmholtz instability (KHI). These features were seen near the flank of a Coronal Mass Ejection (CME) wake between 7.5 R ⊙ and 9.5 R ⊙ , lasting for about 30 minutes. The CME was a slow event, associated with a streamer blowout. We analyzed the size of the eddies and found growth during their evolution while maintaining separation distances and alignment typical of Kelvin–Helmholtz vortexes. We then assessed the magnetic field conditions that would make the observation of such an instability plausible. Two methods were used to cross-check our findings. The measured thickness of the boundary layer supports KHI candidacy, and the estimated linear growth rate suggests nonlinear saturation within the expected timescale. We conclude that a KHI is a plausible explanation for the observed features, and therefore that such instabilities might exist in the low and middle solar corona (within ∼15 R ⊙ ) and can be detected in white light observations. Their observation, however, might be rare due to stringent conditions like the observer’s proximity, suitable viewing circumstances, magnetic field topology, and flow properties. This study highlights the unique capability of PSP/WISPR in observing such phenomena, especially as PSP perihelia reach closer distances to the Sun.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad2208</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9027-8249</orcidid><orcidid>https://orcid.org/0000-0002-4459-7510</orcidid><orcidid>https://orcid.org/0000-0002-8164-5948</orcidid><orcidid>https://orcid.org/0000-0002-8387-5202</orcidid><orcidid>https://orcid.org/0000-0001-8480-947X</orcidid><orcidid>https://orcid.org/0000-0003-2409-3742</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2024-04, Vol.964 (2), p.139
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ad2208
source EZB-FREE-00999 freely available EZB journals
subjects Boundary layers
Corona
Coronal mass ejection
Eddies
Heliosphere
Instability
Kelvin-Helmholtz instability
Magnetic fields
Magnetic properties
Solar corona
Solar coronal mass ejections
Solar probes
Solar wind
Stability analysis
The Sun
Thickness measurement
Topology
White light
title First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20Direct%20Imaging%20of%20a%20Kelvin%E2%80%93Helmholtz%20Instability%20by%20PSP/WISPR&rft.jtitle=The%20Astrophysical%20journal&rft.au=Paouris,%20Evangelos&rft.date=2024-04-01&rft.volume=964&rft.issue=2&rft.spage=139&rft.pages=139-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad2208&rft_dat=%3Cproquest_cross%3E3006025866%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-bdf708cf54385c11e18ecd15e07883b5193d6674d1924b8afd2dc6f687d022223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3006025866&rft_id=info:pmid/&rfr_iscdi=true