Loading…
Interpretable Machine Learning for Finding Intermediate-mass Black Holes
Definitive evidence that globular clusters (GCs) host intermediate-mass black holes (IMBHs) is elusive. Machine-learning (ML) models trained on GC simulations can in principle predict IMBH host candidates based on observable features. This approach has two limitations: first, an accurate ML model is...
Saved in:
Published in: | The Astrophysical journal 2024-04, Vol.965 (1), p.89 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c398t-1eb62a942a67d26324e6cf90945d40c9afb6c9f261616b9ba848a0f6e56997843 |
container_end_page | |
container_issue | 1 |
container_start_page | 89 |
container_title | The Astrophysical journal |
container_volume | 965 |
creator | Pasquato, Mario Trevisan, Piero Askar, Abbas Lemos, Pablo Carenini, Gaia Mapelli, Michela Hezaveh, Yashar |
description | Definitive evidence that globular clusters (GCs) host intermediate-mass black holes (IMBHs) is elusive. Machine-learning (ML) models trained on GC simulations can in principle predict IMBH host candidates based on observable features. This approach has two limitations: first, an accurate ML model is expected to be a black box due to complexity; second, despite our efforts to simulate GCs realistically, the simulation physics or initial conditions may fail to reflect reality fully. Therefore our training data may be biased, leading to a failure in generalization to observational data. Both the first issue—explainability/interpretability—and the second—out of distribution generalization and fairness—are active areas of research in ML. Here we employ techniques from these fields to address them: we use the anchors method to explain an Extreme Gradient Boosting (XGBoost) classifier; we also independently train a natively interpretable model using Certifiably Optimal RulE ListS (CORELS). The resulting model has a clear physical meaning, but loses some performance with respect to XGBoost. We evaluate potential candidates in real data based not only on classifier predictions but also on their similarity to the training data, measured by the likelihood of a kernel density estimation model. This measures the realism of our simulated data and mitigates the risk that our models may produce biased predictions by working in extrapolation. We apply our classifiers to real GCs, obtaining a predicted classification, a measure of the confidence of the prediction, an out-of-distribution flag, a local rule explaining the prediction of XGBoost, and a global rule from CORELS. |
doi_str_mv | 10.3847/1538-4357/ad2261 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ad2261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_73f2a60e17a546a780ac2b84f071c5e0</doaj_id><sourcerecordid>3035157681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-1eb62a942a67d26324e6cf90945d40c9afb6c9f261616b9ba848a0f6e56997843</originalsourceid><addsrcrecordid>eNp9kM1P3DAQxS1UJLbAnWOk9tiAHX8fW1TYlRZxAYmbNXHGNNtsnNrhwH_fhCC4IOSDPaPfvDd-hJwxes6N0BdMclMKLvUFNFWl2AFZvbW-kBWlVJSK64cj8jXn3VxW1q7IetOPmIaEI9QdFjfg_7Q9FluE1Lf9YxFiKq7avpnfL-gemxZGLPeQc_GrA_-3WMcO8wk5DNBlPH29j8n91e-7y3W5vb3eXP7clp5bM5YMa1WBFRUo3VSKVwKVD5ZaIRtBvYVQK2_D9IHp1LYGIwzQoFAqa7UR_JhsFt0mws4Nqd1DenYRWvfSiOnRQRpb36HTPEw2FJkGKRRoQ8FXtRGBauYl0knr26I1pPjvCfPodvEp9dP6jlMumdTKsImiC-VTzDlheHNl1M3ZuzloNwftluynkR_LSBuHd81P8O8f4DDsnFXSMWesG5rA_wOxio9j</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035157681</pqid></control><display><type>article</type><title>Interpretable Machine Learning for Finding Intermediate-mass Black Holes</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pasquato, Mario ; Trevisan, Piero ; Askar, Abbas ; Lemos, Pablo ; Carenini, Gaia ; Mapelli, Michela ; Hezaveh, Yashar</creator><creatorcontrib>Pasquato, Mario ; Trevisan, Piero ; Askar, Abbas ; Lemos, Pablo ; Carenini, Gaia ; Mapelli, Michela ; Hezaveh, Yashar</creatorcontrib><description>Definitive evidence that globular clusters (GCs) host intermediate-mass black holes (IMBHs) is elusive. Machine-learning (ML) models trained on GC simulations can in principle predict IMBH host candidates based on observable features. This approach has two limitations: first, an accurate ML model is expected to be a black box due to complexity; second, despite our efforts to simulate GCs realistically, the simulation physics or initial conditions may fail to reflect reality fully. Therefore our training data may be biased, leading to a failure in generalization to observational data. Both the first issue—explainability/interpretability—and the second—out of distribution generalization and fairness—are active areas of research in ML. Here we employ techniques from these fields to address them: we use the anchors method to explain an Extreme Gradient Boosting (XGBoost) classifier; we also independently train a natively interpretable model using Certifiably Optimal RulE ListS (CORELS). The resulting model has a clear physical meaning, but loses some performance with respect to XGBoost. We evaluate potential candidates in real data based not only on classifier predictions but also on their similarity to the training data, measured by the likelihood of a kernel density estimation model. This measures the realism of our simulated data and mitigates the risk that our models may produce biased predictions by working in extrapolation. We apply our classifiers to real GCs, obtaining a predicted classification, a measure of the confidence of the prediction, an out-of-distribution flag, a local rule explaining the prediction of XGBoost, and a global rule from CORELS.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad2261</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysical black holes ; Black holes ; Classifiers ; Globular clusters ; Initial conditions ; Intermediate-mass black holes ; Machine learning ; Physics ; Predictions ; Risk reduction ; Simulation ; Training</subject><ispartof>The Astrophysical journal, 2024-04, Vol.965 (1), p.89</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c398t-1eb62a942a67d26324e6cf90945d40c9afb6c9f261616b9ba848a0f6e56997843</cites><orcidid>0000-0001-9511-4649 ; 0000-0001-9688-3458 ; 0000-0001-8799-2548 ; 0000-0003-3784-5245 ; 0000-0002-4728-8473 ; 0000-0002-8669-5733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pasquato, Mario</creatorcontrib><creatorcontrib>Trevisan, Piero</creatorcontrib><creatorcontrib>Askar, Abbas</creatorcontrib><creatorcontrib>Lemos, Pablo</creatorcontrib><creatorcontrib>Carenini, Gaia</creatorcontrib><creatorcontrib>Mapelli, Michela</creatorcontrib><creatorcontrib>Hezaveh, Yashar</creatorcontrib><title>Interpretable Machine Learning for Finding Intermediate-mass Black Holes</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Definitive evidence that globular clusters (GCs) host intermediate-mass black holes (IMBHs) is elusive. Machine-learning (ML) models trained on GC simulations can in principle predict IMBH host candidates based on observable features. This approach has two limitations: first, an accurate ML model is expected to be a black box due to complexity; second, despite our efforts to simulate GCs realistically, the simulation physics or initial conditions may fail to reflect reality fully. Therefore our training data may be biased, leading to a failure in generalization to observational data. Both the first issue—explainability/interpretability—and the second—out of distribution generalization and fairness—are active areas of research in ML. Here we employ techniques from these fields to address them: we use the anchors method to explain an Extreme Gradient Boosting (XGBoost) classifier; we also independently train a natively interpretable model using Certifiably Optimal RulE ListS (CORELS). The resulting model has a clear physical meaning, but loses some performance with respect to XGBoost. We evaluate potential candidates in real data based not only on classifier predictions but also on their similarity to the training data, measured by the likelihood of a kernel density estimation model. This measures the realism of our simulated data and mitigates the risk that our models may produce biased predictions by working in extrapolation. We apply our classifiers to real GCs, obtaining a predicted classification, a measure of the confidence of the prediction, an out-of-distribution flag, a local rule explaining the prediction of XGBoost, and a global rule from CORELS.</description><subject>Astrophysical black holes</subject><subject>Black holes</subject><subject>Classifiers</subject><subject>Globular clusters</subject><subject>Initial conditions</subject><subject>Intermediate-mass black holes</subject><subject>Machine learning</subject><subject>Physics</subject><subject>Predictions</subject><subject>Risk reduction</subject><subject>Simulation</subject><subject>Training</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kM1P3DAQxS1UJLbAnWOk9tiAHX8fW1TYlRZxAYmbNXHGNNtsnNrhwH_fhCC4IOSDPaPfvDd-hJwxes6N0BdMclMKLvUFNFWl2AFZvbW-kBWlVJSK64cj8jXn3VxW1q7IetOPmIaEI9QdFjfg_7Q9FluE1Lf9YxFiKq7avpnfL-gemxZGLPeQc_GrA_-3WMcO8wk5DNBlPH29j8n91e-7y3W5vb3eXP7clp5bM5YMa1WBFRUo3VSKVwKVD5ZaIRtBvYVQK2_D9IHp1LYGIwzQoFAqa7UR_JhsFt0mws4Nqd1DenYRWvfSiOnRQRpb36HTPEw2FJkGKRRoQ8FXtRGBauYl0knr26I1pPjvCfPodvEp9dP6jlMumdTKsImiC-VTzDlheHNl1M3ZuzloNwftluynkR_LSBuHd81P8O8f4DDsnFXSMWesG5rA_wOxio9j</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Pasquato, Mario</creator><creator>Trevisan, Piero</creator><creator>Askar, Abbas</creator><creator>Lemos, Pablo</creator><creator>Carenini, Gaia</creator><creator>Mapelli, Michela</creator><creator>Hezaveh, Yashar</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9511-4649</orcidid><orcidid>https://orcid.org/0000-0001-9688-3458</orcidid><orcidid>https://orcid.org/0000-0001-8799-2548</orcidid><orcidid>https://orcid.org/0000-0003-3784-5245</orcidid><orcidid>https://orcid.org/0000-0002-4728-8473</orcidid><orcidid>https://orcid.org/0000-0002-8669-5733</orcidid></search><sort><creationdate>20240401</creationdate><title>Interpretable Machine Learning for Finding Intermediate-mass Black Holes</title><author>Pasquato, Mario ; Trevisan, Piero ; Askar, Abbas ; Lemos, Pablo ; Carenini, Gaia ; Mapelli, Michela ; Hezaveh, Yashar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-1eb62a942a67d26324e6cf90945d40c9afb6c9f261616b9ba848a0f6e56997843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrophysical black holes</topic><topic>Black holes</topic><topic>Classifiers</topic><topic>Globular clusters</topic><topic>Initial conditions</topic><topic>Intermediate-mass black holes</topic><topic>Machine learning</topic><topic>Physics</topic><topic>Predictions</topic><topic>Risk reduction</topic><topic>Simulation</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pasquato, Mario</creatorcontrib><creatorcontrib>Trevisan, Piero</creatorcontrib><creatorcontrib>Askar, Abbas</creatorcontrib><creatorcontrib>Lemos, Pablo</creatorcontrib><creatorcontrib>Carenini, Gaia</creatorcontrib><creatorcontrib>Mapelli, Michela</creatorcontrib><creatorcontrib>Hezaveh, Yashar</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pasquato, Mario</au><au>Trevisan, Piero</au><au>Askar, Abbas</au><au>Lemos, Pablo</au><au>Carenini, Gaia</au><au>Mapelli, Michela</au><au>Hezaveh, Yashar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretable Machine Learning for Finding Intermediate-mass Black Holes</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>965</volume><issue>1</issue><spage>89</spage><pages>89-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Definitive evidence that globular clusters (GCs) host intermediate-mass black holes (IMBHs) is elusive. Machine-learning (ML) models trained on GC simulations can in principle predict IMBH host candidates based on observable features. This approach has two limitations: first, an accurate ML model is expected to be a black box due to complexity; second, despite our efforts to simulate GCs realistically, the simulation physics or initial conditions may fail to reflect reality fully. Therefore our training data may be biased, leading to a failure in generalization to observational data. Both the first issue—explainability/interpretability—and the second—out of distribution generalization and fairness—are active areas of research in ML. Here we employ techniques from these fields to address them: we use the anchors method to explain an Extreme Gradient Boosting (XGBoost) classifier; we also independently train a natively interpretable model using Certifiably Optimal RulE ListS (CORELS). The resulting model has a clear physical meaning, but loses some performance with respect to XGBoost. We evaluate potential candidates in real data based not only on classifier predictions but also on their similarity to the training data, measured by the likelihood of a kernel density estimation model. This measures the realism of our simulated data and mitigates the risk that our models may produce biased predictions by working in extrapolation. We apply our classifiers to real GCs, obtaining a predicted classification, a measure of the confidence of the prediction, an out-of-distribution flag, a local rule explaining the prediction of XGBoost, and a global rule from CORELS.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad2261</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9511-4649</orcidid><orcidid>https://orcid.org/0000-0001-9688-3458</orcidid><orcidid>https://orcid.org/0000-0001-8799-2548</orcidid><orcidid>https://orcid.org/0000-0003-3784-5245</orcidid><orcidid>https://orcid.org/0000-0002-4728-8473</orcidid><orcidid>https://orcid.org/0000-0002-8669-5733</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2024-04, Vol.965 (1), p.89 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_ad2261 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Astrophysical black holes Black holes Classifiers Globular clusters Initial conditions Intermediate-mass black holes Machine learning Physics Predictions Risk reduction Simulation Training |
title | Interpretable Machine Learning for Finding Intermediate-mass Black Holes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretable%20Machine%20Learning%20for%20Finding%20Intermediate-mass%20Black%20Holes&rft.jtitle=The%20Astrophysical%20journal&rft.au=Pasquato,%20Mario&rft.date=2024-04-01&rft.volume=965&rft.issue=1&rft.spage=89&rft.pages=89-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad2261&rft_dat=%3Cproquest_cross%3E3035157681%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-1eb62a942a67d26324e6cf90945d40c9afb6c9f261616b9ba848a0f6e56997843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3035157681&rft_id=info:pmid/&rfr_iscdi=true |