Loading…

Detecting and Classifying Flares in High-resolution Solar Spectra with Supervised Machine Learning

Flares are a well-studied aspect of the Sun’s magnetic activity. Detecting and classifying solar flares can inform the analysis of contamination caused by stellar flares in exoplanet transmission spectra. In this paper, we present a standardized procedure to classify solar flares with the aid of sup...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2024-10, Vol.973 (2), p.109
Main Authors: Hao, Nicole, Flagg, Laura, Jayawardhana, Ray
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flares are a well-studied aspect of the Sun’s magnetic activity. Detecting and classifying solar flares can inform the analysis of contamination caused by stellar flares in exoplanet transmission spectra. In this paper, we present a standardized procedure to classify solar flares with the aid of supervised machine learning. Using flare data from the RHESSI mission and solar spectra from the HARPS-N instrument, we trained several supervised machine-learning models, and found that the best-performing algorithm is C-Support Vector Classification (SVC) with nonlinear kernels, specifically radial basis functions (RBF). The best-trained model, SVC with RBF kernels, achieves an average aggregate accuracy score of 0.65, and categorical accuracy scores of over 0.70 for the no-flare and weak-flare classes, respectively. In comparison, a blind classification algorithm would have an accuracy score of 0.33. Testing showed that the model is able to detect and classify solar flares in entirely new data with different characteristics and distributions from those of the training set. Future efforts could focus on enhancing classification accuracy, investigating the efficacy of alternative models, particularly deep learning models, and incorporating more data sets to extend the application of this framework to stars that host exoplanets.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ad5be3