Loading…
Public Data Release of the FIRE-2 Cosmological Zoom-in Simulations of Galaxy Formation
We describe a public data release of the FIRE-2 cosmological zoom-in simulations of galaxy formation (available at http://flathub.flatironinstitute.org/fire ) from the Feedback In Realistic Environments (FIRE) project. FIRE-2 simulations achieve parsec-scale resolution to explicitly model the multip...
Saved in:
Published in: | The Astrophysical journal. Supplement series 2023-04, Vol.265 (2), p.44 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe a public data release of the FIRE-2 cosmological zoom-in simulations of galaxy formation (available at
http://flathub.flatironinstitute.org/fire
) from the Feedback In Realistic Environments (FIRE) project. FIRE-2 simulations achieve parsec-scale resolution to explicitly model the multiphase interstellar medium while implementing direct models for stellar evolution and feedback, including stellar winds, core-collapse and Type Ia supernovae, radiation pressure, photoionization, and photoelectric heating. We release complete snapshots from three suites of simulations. The first comprises 20 simulations that zoom in on 14 Milky Way (MW)–mass galaxies, five SMC/LMC-mass galaxies, and four lower-mass galaxies including one ultrafaint; we release 39 snapshots across
z
= 0–10. The second comprises four massive galaxies, with 19 snapshots across
z
= 1–10. Finally, a high-redshift suite comprises 22 simulations, with 11 snapshots across
z
= 5–10. Each simulation also includes dozens of resolved lower-mass (satellite) galaxies in its zoom-in region. Snapshots include all stored properties for all dark matter, gas, and star particles, including 11 elemental abundances for stars and gas, and formation times (ages) of star particles. We also release accompanying (sub)halo catalogs, which include galaxy properties and member star particles. For the simulations to
z
= 0, including all MW-mass galaxies, we release the formation coordinates and an “ex situ” flag for all star particles, pointers to track particles across snapshots, catalogs of stellar streams, and multipole basis expansions for the halo mass distributions. We describe publicly available python packages for reading and analyzing these simulations. |
---|---|
ISSN: | 0067-0049 1538-4365 |
DOI: | 10.3847/1538-4365/acb99a |