Loading…
Gene expression in rat lungs during early response to paraquat-induced oxidative stress
Paraquat (PQ) is a well-known pneumotoxicant and provides an established model of oxidative stress. This study focused on the transcriptional response to PQ-driven oxidative stress in rat lungs during an early phase post-injection. Rats were sacrificed at 3 h and 24 h after PQ injection (i.p., 20 mg...
Saved in:
Published in: | International journal of molecular medicine 2006-01, Vol.17 (1), p.37-44 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Paraquat (PQ) is a well-known pneumotoxicant and provides an established
model of oxidative stress. This study focused on the transcriptional response
to PQ-driven oxidative stress in rat lungs during an early phase post-injection.
Rats were sacrificed at 3 h and 24 h after PQ injection (i.p., 20 mg/kg b.w.),
and at 3 h after a second injection (i.p., 20 mg/kg b.w.). The left lungs were
rapidly excised and used immediately for RNA preparation. The lung tissues did
not show any pathological damage microscopically. Differential expression of RNAs
in the lung at 3 h was investigated using a DNA array system. Fifteen genes showed
a >1.7-fold change in expression level, which was confirmed by real-time PCR.
Five genes related to oxidative stress, TRX, HO-1, GST-Yc, NQO-1, and RL/IF-1,
and one gene, CLK3, whose function is unknown, showed a significant increase in
their expression due to PQ injection. Two genes, HO-1 and NQO-1, that showed 3-
and 2-fold increases at 3-h post-injection, were localized by immunohistochemistry.
HO-1 was expressed in the bronchial epithelial cells, some type II cells and macrophages
of control lungs, and the cells, especially the bronchial epithelial cells, were
strongly stained 3 h following PQ treatment. Immunohistochemical analysis of NQO-1
also showed an increase in positive staining in the bronchial epithelial cells
of PQ-treated lung sections. The expression of CYP2C6, 2C7, and 2C12, which are
specific to or dominant in female liver, decreased markedly, while the male-specific
CYP2C13 and 2C11 showed an increase or no effect. Further investigation is needed
to clarify the role of these CYP2C family genes on the early phase of PQ toxicity.
These results indicate that the acclimation to oxidative stress is already a highly
complex process at the onset of PQ-induced damage and that the genes described
herein may prove to be major contributors to the subsequent pulmonary fibrosis. |
---|---|
ISSN: | 1107-3756 1791-244X |
DOI: | 10.3892/ijmm.17.1.37 |