Loading…

Comparison between optical and electrical data on hole concentration in zinc-doped p-GaAs

The optical and electrical properties of zinc-doped Cz p -GaAs have been studied. Reflection spectra of ten p -GaAs specimens have been taken in the mid-IR region. Van der Pau galvanomagnetic, electrical resistivity and Hall coefficient measurements have been carried out for the same specimens (all...

Full description

Saved in:
Bibliographic Details
Published in:Modern electronic materials 2023-07, Vol.9 (2), p.69-76
Main Authors: Belov, Aleksandr G., Kanevskii, Vladimir E., Kladova, Evgeniya I., Knyazev, Stanislav N., Komarovskiy, Nikita Yu, Parfent'eva, Irina B., Chernyshova, Evgeniya V.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The optical and electrical properties of zinc-doped Cz p -GaAs have been studied. Reflection spectra of ten p -GaAs specimens have been taken in the mid-IR region. Van der Pau galvanomagnetic, electrical resistivity and Hall coefficient measurements have been carried out for the same specimens (all the measurements were carried out at room temperature). The reflection spectra have been processed using the Kramers–Kronig relations, spectral dependences of the real and imaginary parts of the complex dielectric permeability have been calculated and loss function curves have been plotted. The loss function maximum position has been used to calculate the characteristic wavenumber corresponding to the high-frequency plasmon-phonon mode frequency. Theoretical calculations have been conducted and a calibration curve has been built up for determining heavy hole concentration in p -GaAs at T = 295 K based on known characteristic wavenumber. Further matching of the optical and Hall data has been used for determining the light to heavy hole mobility ratio. This ratio proves to be in the 1.9–2.8 range which is far lower as compared with theoretical predictions in the assumption of the same scattering mechanism for light and heavy holes (at optical phonons). It has been hypothesized that the scattering mechanisms for light and heavy holes differ.
ISSN:2452-2449
2452-1779
DOI:10.3897/j.moem.9.2.109743