Loading…
Extended Brauer analysis of some Dynkin and Euclidean diagrams
The analysis of algebraic invariants of algebras induced by appropriated multiset systems called Brauer configurations is a Brauer analysis of the data defining the multisets. Giving a complete description of such algebraic invariants (e.g., giving a closed formula for the dimensions of algebras ind...
Saved in:
Published in: | Electronic research archive 2024-10, Vol.32 (10), p.5752-5782 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c225t-8c7a93573af2ce3779f7ce43bd231291b8e158e7aa38d3a84dcc57702970efd83 |
container_end_page | 5782 |
container_issue | 10 |
container_start_page | 5752 |
container_title | Electronic research archive |
container_volume | 32 |
creator | Cañadas, Agustín Moreno Espinosa, Pedro Fernando Fernández Rodríguez-Nieto, José Gregorio Mendez, Odette M Arteaga-Bastidas, Ricardo Hugo |
description | The analysis of algebraic invariants of algebras induced by appropriated multiset systems called Brauer configurations is a Brauer analysis of the data defining the multisets. Giving a complete description of such algebraic invariants (e.g., giving a closed formula for the dimensions of algebras induced by significant classes of Brauer configurations) is generally a tricky problem. Ringel previously proposed an analysis of this type in the case of Dynkin algebras, for which so-called Dynkin functions were used to study the numerical behavior of invariants associated with such algebras. This paper introduces two additional tools (the entropy and the covering graph of a Brauer configuration) for Brauer analysis, which is applied to Dynkin and Euclidean diagrams to define Dynkin functions associated with Brauer configuration algebras. Properties of graph entropies defined by the corresponding covering graphs are given to establish relationships between the theory of Dynkin functions, the Brauer configuration algebras theory, and the topological content information theory. |
doi_str_mv | 10.3934/era.2024266 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3934_era_2024266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3934_era_2024266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-8c7a93573af2ce3779f7ce43bd231291b8e158e7aa38d3a84dcc57702970efd83</originalsourceid><addsrcrecordid>eNpNz0tLAzEUBeAgCpbalX8ge5ma5GYmyUbQOj6g0E1dD7fJjYzOQ5IWnH9vxS5cncNZHPgYu5ZiCQ70LSVcKqG0qqozNlOVtYUsnT7_1y_ZIucPIYSyUghdzdhd_b2nIVDgDwkPlDgO2E25zXyMPI898cdp-GyH4x54ffBdGwgHHlp8T9jnK3YRscu0OOWcvT3V29VLsd48v67u14VXqtwX1ht0UBrAqDyBMS4aTxp2QYFUTu4sydKSQQQbAK0O3pfGCOWMoBgszNnN369PY86JYvOV2h7T1EjR_Oqbo7456eEHe4lMqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extended Brauer analysis of some Dynkin and Euclidean diagrams</title><source>Alma/SFX Local Collection</source><creator>Cañadas, Agustín Moreno ; Espinosa, Pedro Fernando Fernández ; Rodríguez-Nieto, José Gregorio ; Mendez, Odette M ; Arteaga-Bastidas, Ricardo Hugo</creator><creatorcontrib>Cañadas, Agustín Moreno ; Espinosa, Pedro Fernando Fernández ; Rodríguez-Nieto, José Gregorio ; Mendez, Odette M ; Arteaga-Bastidas, Ricardo Hugo</creatorcontrib><description>The analysis of algebraic invariants of algebras induced by appropriated multiset systems called Brauer configurations is a Brauer analysis of the data defining the multisets. Giving a complete description of such algebraic invariants (e.g., giving a closed formula for the dimensions of algebras induced by significant classes of Brauer configurations) is generally a tricky problem. Ringel previously proposed an analysis of this type in the case of Dynkin algebras, for which so-called Dynkin functions were used to study the numerical behavior of invariants associated with such algebras. This paper introduces two additional tools (the entropy and the covering graph of a Brauer configuration) for Brauer analysis, which is applied to Dynkin and Euclidean diagrams to define Dynkin functions associated with Brauer configuration algebras. Properties of graph entropies defined by the corresponding covering graphs are given to establish relationships between the theory of Dynkin functions, the Brauer configuration algebras theory, and the topological content information theory.</description><identifier>ISSN: 2688-1594</identifier><identifier>EISSN: 2688-1594</identifier><identifier>DOI: 10.3934/era.2024266</identifier><language>eng</language><ispartof>Electronic research archive, 2024-10, Vol.32 (10), p.5752-5782</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-8c7a93573af2ce3779f7ce43bd231291b8e158e7aa38d3a84dcc57702970efd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cañadas, Agustín Moreno</creatorcontrib><creatorcontrib>Espinosa, Pedro Fernando Fernández</creatorcontrib><creatorcontrib>Rodríguez-Nieto, José Gregorio</creatorcontrib><creatorcontrib>Mendez, Odette M</creatorcontrib><creatorcontrib>Arteaga-Bastidas, Ricardo Hugo</creatorcontrib><title>Extended Brauer analysis of some Dynkin and Euclidean diagrams</title><title>Electronic research archive</title><description>The analysis of algebraic invariants of algebras induced by appropriated multiset systems called Brauer configurations is a Brauer analysis of the data defining the multisets. Giving a complete description of such algebraic invariants (e.g., giving a closed formula for the dimensions of algebras induced by significant classes of Brauer configurations) is generally a tricky problem. Ringel previously proposed an analysis of this type in the case of Dynkin algebras, for which so-called Dynkin functions were used to study the numerical behavior of invariants associated with such algebras. This paper introduces two additional tools (the entropy and the covering graph of a Brauer configuration) for Brauer analysis, which is applied to Dynkin and Euclidean diagrams to define Dynkin functions associated with Brauer configuration algebras. Properties of graph entropies defined by the corresponding covering graphs are given to establish relationships between the theory of Dynkin functions, the Brauer configuration algebras theory, and the topological content information theory.</description><issn>2688-1594</issn><issn>2688-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNz0tLAzEUBeAgCpbalX8ge5ma5GYmyUbQOj6g0E1dD7fJjYzOQ5IWnH9vxS5cncNZHPgYu5ZiCQ70LSVcKqG0qqozNlOVtYUsnT7_1y_ZIucPIYSyUghdzdhd_b2nIVDgDwkPlDgO2E25zXyMPI898cdp-GyH4x54ffBdGwgHHlp8T9jnK3YRscu0OOWcvT3V29VLsd48v67u14VXqtwX1ht0UBrAqDyBMS4aTxp2QYFUTu4sydKSQQQbAK0O3pfGCOWMoBgszNnN369PY86JYvOV2h7T1EjR_Oqbo7456eEHe4lMqA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Cañadas, Agustín Moreno</creator><creator>Espinosa, Pedro Fernando Fernández</creator><creator>Rodríguez-Nieto, José Gregorio</creator><creator>Mendez, Odette M</creator><creator>Arteaga-Bastidas, Ricardo Hugo</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Extended Brauer analysis of some Dynkin and Euclidean diagrams</title><author>Cañadas, Agustín Moreno ; Espinosa, Pedro Fernando Fernández ; Rodríguez-Nieto, José Gregorio ; Mendez, Odette M ; Arteaga-Bastidas, Ricardo Hugo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-8c7a93573af2ce3779f7ce43bd231291b8e158e7aa38d3a84dcc57702970efd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cañadas, Agustín Moreno</creatorcontrib><creatorcontrib>Espinosa, Pedro Fernando Fernández</creatorcontrib><creatorcontrib>Rodríguez-Nieto, José Gregorio</creatorcontrib><creatorcontrib>Mendez, Odette M</creatorcontrib><creatorcontrib>Arteaga-Bastidas, Ricardo Hugo</creatorcontrib><collection>CrossRef</collection><jtitle>Electronic research archive</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cañadas, Agustín Moreno</au><au>Espinosa, Pedro Fernando Fernández</au><au>Rodríguez-Nieto, José Gregorio</au><au>Mendez, Odette M</au><au>Arteaga-Bastidas, Ricardo Hugo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Brauer analysis of some Dynkin and Euclidean diagrams</atitle><jtitle>Electronic research archive</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>32</volume><issue>10</issue><spage>5752</spage><epage>5782</epage><pages>5752-5782</pages><issn>2688-1594</issn><eissn>2688-1594</eissn><abstract>The analysis of algebraic invariants of algebras induced by appropriated multiset systems called Brauer configurations is a Brauer analysis of the data defining the multisets. Giving a complete description of such algebraic invariants (e.g., giving a closed formula for the dimensions of algebras induced by significant classes of Brauer configurations) is generally a tricky problem. Ringel previously proposed an analysis of this type in the case of Dynkin algebras, for which so-called Dynkin functions were used to study the numerical behavior of invariants associated with such algebras. This paper introduces two additional tools (the entropy and the covering graph of a Brauer configuration) for Brauer analysis, which is applied to Dynkin and Euclidean diagrams to define Dynkin functions associated with Brauer configuration algebras. Properties of graph entropies defined by the corresponding covering graphs are given to establish relationships between the theory of Dynkin functions, the Brauer configuration algebras theory, and the topological content information theory.</abstract><doi>10.3934/era.2024266</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2688-1594 |
ispartof | Electronic research archive, 2024-10, Vol.32 (10), p.5752-5782 |
issn | 2688-1594 2688-1594 |
language | eng |
recordid | cdi_crossref_primary_10_3934_era_2024266 |
source | Alma/SFX Local Collection |
title | Extended Brauer analysis of some Dynkin and Euclidean diagrams |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Brauer%20analysis%20of%20some%20Dynkin%20and%20Euclidean%20diagrams&rft.jtitle=Electronic%20research%20archive&rft.au=Ca%C3%B1adas,%20Agust%C3%ADn%20Moreno&rft.date=2024-10-01&rft.volume=32&rft.issue=10&rft.spage=5752&rft.epage=5782&rft.pages=5752-5782&rft.issn=2688-1594&rft.eissn=2688-1594&rft_id=info:doi/10.3934/era.2024266&rft_dat=%3Ccrossref%3E10_3934_era_2024266%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-8c7a93573af2ce3779f7ce43bd231291b8e158e7aa38d3a84dcc57702970efd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |