Loading…

Extended Brauer analysis of some Dynkin and Euclidean diagrams

The analysis of algebraic invariants of algebras induced by appropriated multiset systems called Brauer configurations is a Brauer analysis of the data defining the multisets. Giving a complete description of such algebraic invariants (e.g., giving a closed formula for the dimensions of algebras ind...

Full description

Saved in:
Bibliographic Details
Published in:Electronic research archive 2024-10, Vol.32 (10), p.5752-5782
Main Authors: Cañadas, Agustín Moreno, Espinosa, Pedro Fernando Fernández, Rodríguez-Nieto, José Gregorio, Mendez, Odette M, Arteaga-Bastidas, Ricardo Hugo
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c225t-8c7a93573af2ce3779f7ce43bd231291b8e158e7aa38d3a84dcc57702970efd83
container_end_page 5782
container_issue 10
container_start_page 5752
container_title Electronic research archive
container_volume 32
creator Cañadas, Agustín Moreno
Espinosa, Pedro Fernando Fernández
Rodríguez-Nieto, José Gregorio
Mendez, Odette M
Arteaga-Bastidas, Ricardo Hugo
description The analysis of algebraic invariants of algebras induced by appropriated multiset systems called Brauer configurations is a Brauer analysis of the data defining the multisets. Giving a complete description of such algebraic invariants (e.g., giving a closed formula for the dimensions of algebras induced by significant classes of Brauer configurations) is generally a tricky problem. Ringel previously proposed an analysis of this type in the case of Dynkin algebras, for which so-called Dynkin functions were used to study the numerical behavior of invariants associated with such algebras. This paper introduces two additional tools (the entropy and the covering graph of a Brauer configuration) for Brauer analysis, which is applied to Dynkin and Euclidean diagrams to define Dynkin functions associated with Brauer configuration algebras. Properties of graph entropies defined by the corresponding covering graphs are given to establish relationships between the theory of Dynkin functions, the Brauer configuration algebras theory, and the topological content information theory.
doi_str_mv 10.3934/era.2024266
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3934_era_2024266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3934_era_2024266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-8c7a93573af2ce3779f7ce43bd231291b8e158e7aa38d3a84dcc57702970efd83</originalsourceid><addsrcrecordid>eNpNz0tLAzEUBeAgCpbalX8ge5ma5GYmyUbQOj6g0E1dD7fJjYzOQ5IWnH9vxS5cncNZHPgYu5ZiCQ70LSVcKqG0qqozNlOVtYUsnT7_1y_ZIucPIYSyUghdzdhd_b2nIVDgDwkPlDgO2E25zXyMPI898cdp-GyH4x54ffBdGwgHHlp8T9jnK3YRscu0OOWcvT3V29VLsd48v67u14VXqtwX1ht0UBrAqDyBMS4aTxp2QYFUTu4sydKSQQQbAK0O3pfGCOWMoBgszNnN369PY86JYvOV2h7T1EjR_Oqbo7456eEHe4lMqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extended Brauer analysis of some Dynkin and Euclidean diagrams</title><source>Alma/SFX Local Collection</source><creator>Cañadas, Agustín Moreno ; Espinosa, Pedro Fernando Fernández ; Rodríguez-Nieto, José Gregorio ; Mendez, Odette M ; Arteaga-Bastidas, Ricardo Hugo</creator><creatorcontrib>Cañadas, Agustín Moreno ; Espinosa, Pedro Fernando Fernández ; Rodríguez-Nieto, José Gregorio ; Mendez, Odette M ; Arteaga-Bastidas, Ricardo Hugo</creatorcontrib><description>The analysis of algebraic invariants of algebras induced by appropriated multiset systems called Brauer configurations is a Brauer analysis of the data defining the multisets. Giving a complete description of such algebraic invariants (e.g., giving a closed formula for the dimensions of algebras induced by significant classes of Brauer configurations) is generally a tricky problem. Ringel previously proposed an analysis of this type in the case of Dynkin algebras, for which so-called Dynkin functions were used to study the numerical behavior of invariants associated with such algebras. This paper introduces two additional tools (the entropy and the covering graph of a Brauer configuration) for Brauer analysis, which is applied to Dynkin and Euclidean diagrams to define Dynkin functions associated with Brauer configuration algebras. Properties of graph entropies defined by the corresponding covering graphs are given to establish relationships between the theory of Dynkin functions, the Brauer configuration algebras theory, and the topological content information theory.</description><identifier>ISSN: 2688-1594</identifier><identifier>EISSN: 2688-1594</identifier><identifier>DOI: 10.3934/era.2024266</identifier><language>eng</language><ispartof>Electronic research archive, 2024-10, Vol.32 (10), p.5752-5782</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-8c7a93573af2ce3779f7ce43bd231291b8e158e7aa38d3a84dcc57702970efd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cañadas, Agustín Moreno</creatorcontrib><creatorcontrib>Espinosa, Pedro Fernando Fernández</creatorcontrib><creatorcontrib>Rodríguez-Nieto, José Gregorio</creatorcontrib><creatorcontrib>Mendez, Odette M</creatorcontrib><creatorcontrib>Arteaga-Bastidas, Ricardo Hugo</creatorcontrib><title>Extended Brauer analysis of some Dynkin and Euclidean diagrams</title><title>Electronic research archive</title><description>The analysis of algebraic invariants of algebras induced by appropriated multiset systems called Brauer configurations is a Brauer analysis of the data defining the multisets. Giving a complete description of such algebraic invariants (e.g., giving a closed formula for the dimensions of algebras induced by significant classes of Brauer configurations) is generally a tricky problem. Ringel previously proposed an analysis of this type in the case of Dynkin algebras, for which so-called Dynkin functions were used to study the numerical behavior of invariants associated with such algebras. This paper introduces two additional tools (the entropy and the covering graph of a Brauer configuration) for Brauer analysis, which is applied to Dynkin and Euclidean diagrams to define Dynkin functions associated with Brauer configuration algebras. Properties of graph entropies defined by the corresponding covering graphs are given to establish relationships between the theory of Dynkin functions, the Brauer configuration algebras theory, and the topological content information theory.</description><issn>2688-1594</issn><issn>2688-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNz0tLAzEUBeAgCpbalX8ge5ma5GYmyUbQOj6g0E1dD7fJjYzOQ5IWnH9vxS5cncNZHPgYu5ZiCQ70LSVcKqG0qqozNlOVtYUsnT7_1y_ZIucPIYSyUghdzdhd_b2nIVDgDwkPlDgO2E25zXyMPI898cdp-GyH4x54ffBdGwgHHlp8T9jnK3YRscu0OOWcvT3V29VLsd48v67u14VXqtwX1ht0UBrAqDyBMS4aTxp2QYFUTu4sydKSQQQbAK0O3pfGCOWMoBgszNnN369PY86JYvOV2h7T1EjR_Oqbo7456eEHe4lMqA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Cañadas, Agustín Moreno</creator><creator>Espinosa, Pedro Fernando Fernández</creator><creator>Rodríguez-Nieto, José Gregorio</creator><creator>Mendez, Odette M</creator><creator>Arteaga-Bastidas, Ricardo Hugo</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Extended Brauer analysis of some Dynkin and Euclidean diagrams</title><author>Cañadas, Agustín Moreno ; Espinosa, Pedro Fernando Fernández ; Rodríguez-Nieto, José Gregorio ; Mendez, Odette M ; Arteaga-Bastidas, Ricardo Hugo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-8c7a93573af2ce3779f7ce43bd231291b8e158e7aa38d3a84dcc57702970efd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cañadas, Agustín Moreno</creatorcontrib><creatorcontrib>Espinosa, Pedro Fernando Fernández</creatorcontrib><creatorcontrib>Rodríguez-Nieto, José Gregorio</creatorcontrib><creatorcontrib>Mendez, Odette M</creatorcontrib><creatorcontrib>Arteaga-Bastidas, Ricardo Hugo</creatorcontrib><collection>CrossRef</collection><jtitle>Electronic research archive</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cañadas, Agustín Moreno</au><au>Espinosa, Pedro Fernando Fernández</au><au>Rodríguez-Nieto, José Gregorio</au><au>Mendez, Odette M</au><au>Arteaga-Bastidas, Ricardo Hugo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Brauer analysis of some Dynkin and Euclidean diagrams</atitle><jtitle>Electronic research archive</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>32</volume><issue>10</issue><spage>5752</spage><epage>5782</epage><pages>5752-5782</pages><issn>2688-1594</issn><eissn>2688-1594</eissn><abstract>The analysis of algebraic invariants of algebras induced by appropriated multiset systems called Brauer configurations is a Brauer analysis of the data defining the multisets. Giving a complete description of such algebraic invariants (e.g., giving a closed formula for the dimensions of algebras induced by significant classes of Brauer configurations) is generally a tricky problem. Ringel previously proposed an analysis of this type in the case of Dynkin algebras, for which so-called Dynkin functions were used to study the numerical behavior of invariants associated with such algebras. This paper introduces two additional tools (the entropy and the covering graph of a Brauer configuration) for Brauer analysis, which is applied to Dynkin and Euclidean diagrams to define Dynkin functions associated with Brauer configuration algebras. Properties of graph entropies defined by the corresponding covering graphs are given to establish relationships between the theory of Dynkin functions, the Brauer configuration algebras theory, and the topological content information theory.</abstract><doi>10.3934/era.2024266</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2688-1594
ispartof Electronic research archive, 2024-10, Vol.32 (10), p.5752-5782
issn 2688-1594
2688-1594
language eng
recordid cdi_crossref_primary_10_3934_era_2024266
source Alma/SFX Local Collection
title Extended Brauer analysis of some Dynkin and Euclidean diagrams
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Brauer%20analysis%20of%20some%20Dynkin%20and%20Euclidean%20diagrams&rft.jtitle=Electronic%20research%20archive&rft.au=Ca%C3%B1adas,%20Agust%C3%ADn%20Moreno&rft.date=2024-10-01&rft.volume=32&rft.issue=10&rft.spage=5752&rft.epage=5782&rft.pages=5752-5782&rft.issn=2688-1594&rft.eissn=2688-1594&rft_id=info:doi/10.3934/era.2024266&rft_dat=%3Ccrossref%3E10_3934_era_2024266%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-8c7a93573af2ce3779f7ce43bd231291b8e158e7aa38d3a84dcc57702970efd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true