Loading…

Intelligent and Data-Driven Reliability Evaluation Model for Wind Turbine Blades

Wind energy is generated via the use of wind blades, turbines and generators that are deployed over a given area. To achieve a higher energy and system reliability, the wind blade and other units of the system must be designed with suitable materials. In this paper however, a computational intellige...

Full description

Saved in:
Bibliographic Details
Published in:International journal of energy optimization and engineering 2022-01, Vol.11 (1), p.1-20
Main Authors: Aikhuele, Daniel Osezua, Periola, Ayodele A, Aigbedion, Elijah, Nwosu, Herold U
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c324t-c047477425403749129ab28ef02320e29f81879e93fd0926bea3b8123a71332c3
container_end_page 20
container_issue 1
container_start_page 1
container_title International journal of energy optimization and engineering
container_volume 11
creator Aikhuele, Daniel Osezua
Periola, Ayodele A
Aigbedion, Elijah
Nwosu, Herold U
description Wind energy is generated via the use of wind blades, turbines and generators that are deployed over a given area. To achieve a higher energy and system reliability, the wind blade and other units of the system must be designed with suitable materials. In this paper however, a computational intelligent model based on an artificial neutral network has been propose for the evaluation of the reliability of the wind turbine blade designed with the FRP material. The simulation results show that there was a reduction in the training mean square error, testing (re–training) mean square error and validation mean square error, when the number of training epochs is increased by 50% such that the minimum mean square error and maximum mean square error were 0.0011 and 0.0061, respectively. The low validation mean square error in the simulation results implies that the developed artificial neural network has a good accuracy when determining the reliability and the failure probability of the wind turbine blade.
doi_str_mv 10.4018/IJEOE.298694
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4018_IJEOE_298694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760152509</galeid><sourcerecordid>A760152509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-c047477425403749129ab28ef02320e29f81879e93fd0926bea3b8123a71332c3</originalsourceid><addsrcrecordid>eNptkV1LwzAUhosoOHR3_oCCt3bmqx-51G3qRJmMiZchbU9rRkxnkgr-ezM71AsTSEJ43pOc942iM4wmDOHicnE_X84nhBcZZwfRiOAMJTxl9PDnjNBxNHZug8LIUEp5OoqeFsaD1qoF42Np6ngmvUxmVn2AiVeglSyVVv4znn9I3UuvOhM_djXouOls_KKCYt3bUhmIr7WswZ1GR43UDsb7_SR6vpmvp3fJw_J2Mb16SCpKmE8qxHKW54ykDNGccUy4LEkBDSKUICC8KXCRc-C0qREnWQmSlgUmVOaYUlLRk-h8qLu13XsPzotN11sTnhSEI5byPHQZqMlAtVKDUKbpvJVVmDW8qaoz0Khwf5VnCKckRTwILv4Iyt6FzlxYnGpfvWtl79y_eGU75yw0YmvVm7SfAiOxi0V8xyKGWAI-HXDVqt__7u0XwX6xs18M9ovVfzUwpl9ropMe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904597000</pqid></control><display><type>article</type><title>Intelligent and Data-Driven Reliability Evaluation Model for Wind Turbine Blades</title><source>IGI Global Gold Open Access e-Journal Collection Copyright 2022</source><creator>Aikhuele, Daniel Osezua ; Periola, Ayodele A ; Aigbedion, Elijah ; Nwosu, Herold U</creator><creatorcontrib>Aikhuele, Daniel Osezua ; Periola, Ayodele A ; Aigbedion, Elijah ; Nwosu, Herold U</creatorcontrib><description>Wind energy is generated via the use of wind blades, turbines and generators that are deployed over a given area. To achieve a higher energy and system reliability, the wind blade and other units of the system must be designed with suitable materials. In this paper however, a computational intelligent model based on an artificial neutral network has been propose for the evaluation of the reliability of the wind turbine blade designed with the FRP material. The simulation results show that there was a reduction in the training mean square error, testing (re–training) mean square error and validation mean square error, when the number of training epochs is increased by 50% such that the minimum mean square error and maximum mean square error were 0.0011 and 0.0061, respectively. The low validation mean square error in the simulation results implies that the developed artificial neural network has a good accuracy when determining the reliability and the failure probability of the wind turbine blade.</description><identifier>ISSN: 2160-9500</identifier><identifier>EISSN: 2160-9543</identifier><identifier>DOI: 10.4018/IJEOE.298694</identifier><language>eng</language><publisher>Kedah: IGI Global</publisher><subject>Air-turbines ; Analysis ; Artificial neural networks ; Buildings and facilities ; Errors ; Force and energy ; Mean square errors ; Mean square values ; Neural networks ; Reliability analysis ; System reliability ; Training ; Turbine blades ; Turbine industry ; Turbines ; Wind power ; Wind turbines</subject><ispartof>International journal of energy optimization and engineering, 2022-01, Vol.11 (1), p.1-20</ispartof><rights>COPYRIGHT 2022 IGI Global</rights><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c324t-c047477425403749129ab28ef02320e29f81879e93fd0926bea3b8123a71332c3</cites><orcidid>0000-0001-9274-4530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Aikhuele, Daniel Osezua</creatorcontrib><creatorcontrib>Periola, Ayodele A</creatorcontrib><creatorcontrib>Aigbedion, Elijah</creatorcontrib><creatorcontrib>Nwosu, Herold U</creatorcontrib><title>Intelligent and Data-Driven Reliability Evaluation Model for Wind Turbine Blades</title><title>International journal of energy optimization and engineering</title><description>Wind energy is generated via the use of wind blades, turbines and generators that are deployed over a given area. To achieve a higher energy and system reliability, the wind blade and other units of the system must be designed with suitable materials. In this paper however, a computational intelligent model based on an artificial neutral network has been propose for the evaluation of the reliability of the wind turbine blade designed with the FRP material. The simulation results show that there was a reduction in the training mean square error, testing (re–training) mean square error and validation mean square error, when the number of training epochs is increased by 50% such that the minimum mean square error and maximum mean square error were 0.0011 and 0.0061, respectively. The low validation mean square error in the simulation results implies that the developed artificial neural network has a good accuracy when determining the reliability and the failure probability of the wind turbine blade.</description><subject>Air-turbines</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Buildings and facilities</subject><subject>Errors</subject><subject>Force and energy</subject><subject>Mean square errors</subject><subject>Mean square values</subject><subject>Neural networks</subject><subject>Reliability analysis</subject><subject>System reliability</subject><subject>Training</subject><subject>Turbine blades</subject><subject>Turbine industry</subject><subject>Turbines</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>2160-9500</issn><issn>2160-9543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkV1LwzAUhosoOHR3_oCCt3bmqx-51G3qRJmMiZchbU9rRkxnkgr-ezM71AsTSEJ43pOc942iM4wmDOHicnE_X84nhBcZZwfRiOAMJTxl9PDnjNBxNHZug8LIUEp5OoqeFsaD1qoF42Np6ngmvUxmVn2AiVeglSyVVv4znn9I3UuvOhM_djXouOls_KKCYt3bUhmIr7WswZ1GR43UDsb7_SR6vpmvp3fJw_J2Mb16SCpKmE8qxHKW54ykDNGccUy4LEkBDSKUICC8KXCRc-C0qREnWQmSlgUmVOaYUlLRk-h8qLu13XsPzotN11sTnhSEI5byPHQZqMlAtVKDUKbpvJVVmDW8qaoz0Khwf5VnCKckRTwILv4Iyt6FzlxYnGpfvWtl79y_eGU75yw0YmvVm7SfAiOxi0V8xyKGWAI-HXDVqt__7u0XwX6xs18M9ovVfzUwpl9ropMe</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Aikhuele, Daniel Osezua</creator><creator>Periola, Ayodele A</creator><creator>Aigbedion, Elijah</creator><creator>Nwosu, Herold U</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9274-4530</orcidid></search><sort><creationdate>20220101</creationdate><title>Intelligent and Data-Driven Reliability Evaluation Model for Wind Turbine Blades</title><author>Aikhuele, Daniel Osezua ; Periola, Ayodele A ; Aigbedion, Elijah ; Nwosu, Herold U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-c047477425403749129ab28ef02320e29f81879e93fd0926bea3b8123a71332c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air-turbines</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Buildings and facilities</topic><topic>Errors</topic><topic>Force and energy</topic><topic>Mean square errors</topic><topic>Mean square values</topic><topic>Neural networks</topic><topic>Reliability analysis</topic><topic>System reliability</topic><topic>Training</topic><topic>Turbine blades</topic><topic>Turbine industry</topic><topic>Turbines</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aikhuele, Daniel Osezua</creatorcontrib><creatorcontrib>Periola, Ayodele A</creatorcontrib><creatorcontrib>Aigbedion, Elijah</creatorcontrib><creatorcontrib>Nwosu, Herold U</creatorcontrib><collection>CrossRef</collection><collection>Gale Business Insights</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>International journal of energy optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aikhuele, Daniel Osezua</au><au>Periola, Ayodele A</au><au>Aigbedion, Elijah</au><au>Nwosu, Herold U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent and Data-Driven Reliability Evaluation Model for Wind Turbine Blades</atitle><jtitle>International journal of energy optimization and engineering</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>11</volume><issue>1</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>2160-9500</issn><eissn>2160-9543</eissn><abstract>Wind energy is generated via the use of wind blades, turbines and generators that are deployed over a given area. To achieve a higher energy and system reliability, the wind blade and other units of the system must be designed with suitable materials. In this paper however, a computational intelligent model based on an artificial neutral network has been propose for the evaluation of the reliability of the wind turbine blade designed with the FRP material. The simulation results show that there was a reduction in the training mean square error, testing (re–training) mean square error and validation mean square error, when the number of training epochs is increased by 50% such that the minimum mean square error and maximum mean square error were 0.0011 and 0.0061, respectively. The low validation mean square error in the simulation results implies that the developed artificial neural network has a good accuracy when determining the reliability and the failure probability of the wind turbine blade.</abstract><cop>Kedah</cop><pub>IGI Global</pub><doi>10.4018/IJEOE.298694</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9274-4530</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2160-9500
ispartof International journal of energy optimization and engineering, 2022-01, Vol.11 (1), p.1-20
issn 2160-9500
2160-9543
language eng
recordid cdi_crossref_primary_10_4018_IJEOE_298694
source IGI Global Gold Open Access e-Journal Collection Copyright 2022
subjects Air-turbines
Analysis
Artificial neural networks
Buildings and facilities
Errors
Force and energy
Mean square errors
Mean square values
Neural networks
Reliability analysis
System reliability
Training
Turbine blades
Turbine industry
Turbines
Wind power
Wind turbines
title Intelligent and Data-Driven Reliability Evaluation Model for Wind Turbine Blades
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20and%20Data-Driven%20Reliability%20Evaluation%20Model%20for%20Wind%20Turbine%20Blades&rft.jtitle=International%20journal%20of%20energy%20optimization%20and%20engineering&rft.au=Aikhuele,%20Daniel%20Osezua&rft.date=2022-01-01&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=2160-9500&rft.eissn=2160-9543&rft_id=info:doi/10.4018/IJEOE.298694&rft_dat=%3Cgale_cross%3EA760152509%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-c047477425403749129ab28ef02320e29f81879e93fd0926bea3b8123a71332c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904597000&rft_id=info:pmid/&rft_galeid=A760152509&rfr_iscdi=true