Loading…
Energy-Efficient Self-Organizing Routing for Wireless Mobile Networks
The instant deployment without relying on an existing infrastructure makes mobile ad hoc networks (MANET) a striking choice for many dynamic situations. An efficient MANET protocol may be applied to other important emerging wireless technologies, such as wireless mesh and sensor networks. This artic...
Saved in:
Published in: | International journal of business data communications and networking 2009-10, Vol.5 (4), p.52-69 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The instant deployment without relying on an existing infrastructure makes mobile ad hoc networks (MANET) a striking choice for many dynamic situations. An efficient MANET protocol may be applied to other important emerging wireless technologies, such as wireless mesh and sensor networks. This article proposes a hierarchical routing scheme that is scalable, energy efficient, and self-organizing. The new algorithm that is discussed in this article is the Dynamic Leader Set Generation (DLSG). This algorithm dynamically selects leader nodes based on traffic demand, locality, and residual energy level, and de-selects them based on residual energy. Therefore, energy consumption and traffic load are balanced throughout the network, and the network reorganizes itself around the dynamically selected leader nodes. Time, space, and message complexities are formally analyzed and implementation issues are also addressed. Incorporating the IEEE 802.11 medium access control mechanism and including the power saving mode, performance evaluation is carried out by simulating DLSG and four existing hierarchical routing algorithms. It shows that DLSG successfully extends network lifetime by 20 to 50% while achieving a comparable level of network performance. |
---|---|
ISSN: | 1548-0631 1548-064X |
DOI: | 10.4018/jbdcn.2009091704 |