Loading…

Assessing the effect of lockdown on COVID-19 pandemic through risk prediction model in major cities of India

The World Health Organization declared COVID-19 outbreak as a pandemic on March 11. Models can be established for this process to analyze and study the transmission process of infectious diseases theoretically. This paper presents the prediction of the number of positive COVID-19 cases for different...

Full description

Saved in:
Bibliographic Details
Published in:International journal of health & allied sciences 2020-04, Vol.9 (5), p.68-72
Main Authors: Kirubakaran, S, Ramraj, Balaji
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c237n-9dbcb942ee5e0e0fd493b01f2d88b1b4bd5a0bc9ae30d895025aaae0b9e5bbe93
cites cdi_FETCH-LOGICAL-c237n-9dbcb942ee5e0e0fd493b01f2d88b1b4bd5a0bc9ae30d895025aaae0b9e5bbe93
container_end_page 72
container_issue 5
container_start_page 68
container_title International journal of health & allied sciences
container_volume 9
creator Kirubakaran, S
Ramraj, Balaji
description The World Health Organization declared COVID-19 outbreak as a pandemic on March 11. Models can be established for this process to analyze and study the transmission process of infectious diseases theoretically. This paper presents the prediction of the number of positive COVID-19 cases for different lockdown scenario being implemented in some of the major cities in India. The predictions and assessments were based on a newly developed mathematical model that divides the population into four classes, i.e., susceptible, exposed, infected, and removed. According to the model, total lockdown can produce an effect in the reduction of number of corona cases in the major cities. However, similar difference may not be noted for the entire country as per the prediction.
doi_str_mv 10.4103/ijhas.IJHAS_103_20
format article
fullrecord <record><control><sourceid>wolterskluwer_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4103_ijhas_IJHAS_103_20</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.4103/ijhas.IJHAS_103_20_68_Assessin</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237n-9dbcb942ee5e0e0fd493b01f2d88b1b4bd5a0bc9ae30d895025aaae0b9e5bbe93</originalsourceid><addsrcrecordid>eNp9kMlqwzAURUVpoSHND3SlH3AqS3ZtLYM7xCWQRQe6ExqeE8WDguRg-vd1mhay6urdB_fcxUHoNibzJCbszu62MszLl-XiVYy_oOQCTSjN8oglyeflWb5GsxB2hJCYZDQlbIKaRQgQgu02uN8ChqoC3WNX4cbp2rihw67DxfqjfIhijveyM9BaPXa9O2y22NtQ470HY3Vvx2brDDTYjkHunMfa9hbCca7sjJU36KqSTYDZ752i96fHt2IZrdbPZbFYRZqyrIu4UVrxhAKkQIBUJuFMkbiiJs9VrBJlUkmU5hIYMTlPCU2llEAUh1Qp4GyK6GlXexeCh0rsvW2l_xr1iKMy8aNMnCsboeIEDa7pwYe6OQzgRQum7tzwDynuc_FnkX0Dlhd60A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Assessing the effect of lockdown on COVID-19 pandemic through risk prediction model in major cities of India</title><source>Alma/SFX Local Collection</source><creator>Kirubakaran, S ; Ramraj, Balaji</creator><creatorcontrib>Kirubakaran, S ; Ramraj, Balaji</creatorcontrib><description>The World Health Organization declared COVID-19 outbreak as a pandemic on March 11. Models can be established for this process to analyze and study the transmission process of infectious diseases theoretically. This paper presents the prediction of the number of positive COVID-19 cases for different lockdown scenario being implemented in some of the major cities in India. The predictions and assessments were based on a newly developed mathematical model that divides the population into four classes, i.e., susceptible, exposed, infected, and removed. According to the model, total lockdown can produce an effect in the reduction of number of corona cases in the major cities. However, similar difference may not be noted for the entire country as per the prediction.</description><identifier>ISSN: 2278-344X</identifier><identifier>EISSN: 2278-344X</identifier><identifier>DOI: 10.4103/ijhas.IJHAS_103_20</identifier><language>eng</language><publisher>Wolters Kluwer India Pvt. Ltd</publisher><ispartof>International journal of health &amp; allied sciences, 2020-04, Vol.9 (5), p.68-72</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c237n-9dbcb942ee5e0e0fd493b01f2d88b1b4bd5a0bc9ae30d895025aaae0b9e5bbe93</citedby><cites>FETCH-LOGICAL-c237n-9dbcb942ee5e0e0fd493b01f2d88b1b4bd5a0bc9ae30d895025aaae0b9e5bbe93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kirubakaran, S</creatorcontrib><creatorcontrib>Ramraj, Balaji</creatorcontrib><title>Assessing the effect of lockdown on COVID-19 pandemic through risk prediction model in major cities of India</title><title>International journal of health &amp; allied sciences</title><description>The World Health Organization declared COVID-19 outbreak as a pandemic on March 11. Models can be established for this process to analyze and study the transmission process of infectious diseases theoretically. This paper presents the prediction of the number of positive COVID-19 cases for different lockdown scenario being implemented in some of the major cities in India. The predictions and assessments were based on a newly developed mathematical model that divides the population into four classes, i.e., susceptible, exposed, infected, and removed. According to the model, total lockdown can produce an effect in the reduction of number of corona cases in the major cities. However, similar difference may not be noted for the entire country as per the prediction.</description><issn>2278-344X</issn><issn>2278-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMlqwzAURUVpoSHND3SlH3AqS3ZtLYM7xCWQRQe6ExqeE8WDguRg-vd1mhay6urdB_fcxUHoNibzJCbszu62MszLl-XiVYy_oOQCTSjN8oglyeflWb5GsxB2hJCYZDQlbIKaRQgQgu02uN8ChqoC3WNX4cbp2rihw67DxfqjfIhijveyM9BaPXa9O2y22NtQ470HY3Vvx2brDDTYjkHunMfa9hbCca7sjJU36KqSTYDZ752i96fHt2IZrdbPZbFYRZqyrIu4UVrxhAKkQIBUJuFMkbiiJs9VrBJlUkmU5hIYMTlPCU2llEAUh1Qp4GyK6GlXexeCh0rsvW2l_xr1iKMy8aNMnCsboeIEDa7pwYe6OQzgRQum7tzwDynuc_FnkX0Dlhd60A</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Kirubakaran, S</creator><creator>Ramraj, Balaji</creator><general>Wolters Kluwer India Pvt. Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>Assessing the effect of lockdown on COVID-19 pandemic through risk prediction model in major cities of India</title><author>Kirubakaran, S ; Ramraj, Balaji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237n-9dbcb942ee5e0e0fd493b01f2d88b1b4bd5a0bc9ae30d895025aaae0b9e5bbe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirubakaran, S</creatorcontrib><creatorcontrib>Ramraj, Balaji</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of health &amp; allied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirubakaran, S</au><au>Ramraj, Balaji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the effect of lockdown on COVID-19 pandemic through risk prediction model in major cities of India</atitle><jtitle>International journal of health &amp; allied sciences</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>9</volume><issue>5</issue><spage>68</spage><epage>72</epage><pages>68-72</pages><issn>2278-344X</issn><eissn>2278-344X</eissn><abstract>The World Health Organization declared COVID-19 outbreak as a pandemic on March 11. Models can be established for this process to analyze and study the transmission process of infectious diseases theoretically. This paper presents the prediction of the number of positive COVID-19 cases for different lockdown scenario being implemented in some of the major cities in India. The predictions and assessments were based on a newly developed mathematical model that divides the population into four classes, i.e., susceptible, exposed, infected, and removed. According to the model, total lockdown can produce an effect in the reduction of number of corona cases in the major cities. However, similar difference may not be noted for the entire country as per the prediction.</abstract><pub>Wolters Kluwer India Pvt. Ltd</pub><doi>10.4103/ijhas.IJHAS_103_20</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2278-344X
ispartof International journal of health & allied sciences, 2020-04, Vol.9 (5), p.68-72
issn 2278-344X
2278-344X
language eng
recordid cdi_crossref_primary_10_4103_ijhas_IJHAS_103_20
source Alma/SFX Local Collection
title Assessing the effect of lockdown on COVID-19 pandemic through risk prediction model in major cities of India
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wolterskluwer_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20effect%20of%20lockdown%20on%20COVID-19%20pandemic%20through%20risk%20prediction%20model%20in%20major%20cities%20of%20India&rft.jtitle=International%20journal%20of%20health%20&%20allied%20sciences&rft.au=Kirubakaran,%20S&rft.date=2020-04-01&rft.volume=9&rft.issue=5&rft.spage=68&rft.epage=72&rft.pages=68-72&rft.issn=2278-344X&rft.eissn=2278-344X&rft_id=info:doi/10.4103/ijhas.IJHAS_103_20&rft_dat=%3Cwolterskluwer_cross%3E10.4103/ijhas.IJHAS_103_20_68_Assessin%3C/wolterskluwer_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c237n-9dbcb942ee5e0e0fd493b01f2d88b1b4bd5a0bc9ae30d895025aaae0b9e5bbe93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true