Loading…
Acetyl salicylic acid alleviates chilling-induced damage in muskmelon seedlings
Salicylic acid (SA) is a common plant-produced signal molecule that is responsible for inducing tolerance to a number of biotic and abiotic stresses. An experiment was, therefore, conducted to test whether acetyl salicylic acid (ASA) application at various concentrations through seed immersion or fo...
Saved in:
Published in: | Canadian journal of plant science 2007-07, Vol.87 (3), p.581-585 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Salicylic acid (SA) is a common plant-produced signal molecule that is responsible for inducing tolerance to a number of biotic and abiotic stresses. An experiment was, therefore, conducted to test whether acetyl salicylic acid (ASA) application at various concentrations through seed immersion or foliar spray would protect muskmelon [Cucumis melo L. (Reticulatus Group)] seedlings subjected to chilling stress. Twenty-one-day-old plants pre-treated with ASA (0, 0.1, 0.25, 0.50 or 1.0 mM) were subjected to chilling stress for 72 h at 3 ± 0.5°C. ASA, applied either through seed immersion or foliar spray, was effective within the range of 0.1 to 1 mM in inducing tolerance to chilling stress in muskmelon seedlings; however, there was no significant difference between application methods. ASA significantly and curvilinearly affected all seedling growth and stress indicator variables tested except shoot dry weight. The best protection was obtained from seedlings pre-treated with 0.5 mM ASA. The highest ASA concentration used was slightly less effective in providing chilling stress protection. Even though both methods provided similar means of protection, due to its simplicity and practicality, immersion of muskmelon seeds prior to sowing in 0.5 mM ASA would be a more desirable method to induce tolerance to chilling stress. Key words: Cucumis melo, aspirin, chilling stress tolerance, gas exchange, electrolyte leakage |
---|---|
ISSN: | 0008-4220 1918-1833 |
DOI: | 10.4141/CJPS06035 |