Loading…

Tolerance of lowbush blueberries (Vaccinium angustifolium Ait.) to drought stress. II. Leaf gas exchange, stem water potential and dry matter partitioning

A 2-yr field study examining the effect of soil moisture on plant water status, photosynthesis and gas exchange parameters in lowbush blueberry (Vaccinium angustifolium Ait.) was conducted at the Nova Scotia Wild Blueberry Institute (NSWBI), Debert, NS. Drought and irrigation treatments were applied...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of plant science 2005-10, Vol.85 (4), p.919-927
Main Authors: Glass, V.M, Percival, D.C, Proctor, J.T.A
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A 2-yr field study examining the effect of soil moisture on plant water status, photosynthesis and gas exchange parameters in lowbush blueberry (Vaccinium angustifolium Ait.) was conducted at the Nova Scotia Wild Blueberry Institute (NSWBI), Debert, NS. Drought and irrigation treatments were applied over two years in either or both the vegetative and cropping years of production. Midday stem water potential values indicated that all treatments resulted in drought stress. Mean stem water potential values ranged from -1.41 to -1.45 MPa. Predawn stem water potentials in the vegetative growth season indicated that although some recharging and recovery of water loss occurred overnight, the drought-stressed plants did not fully return to pre-stress levels under the moisture-limiting conditions. Higher chlorophyll a and b levels were observed in the single-season drought treatment. Leaves of irrigated plants in both sprout and crop years had the highest stomatal density. There were no differences in photosynthetic rate (Pn) among treatments despite the lower stomatal conductance resulting from limited soil moisture. Key words: Photosynthesis, stomate, stem water potential
ISSN:0008-4220
1918-1833
DOI:10.4141/P03-028