Loading…
Assessing soil nitrogen availability in contrasting cropping systems at the end of transition to organic production
Liu, K., Hammermeister, A. M., Warman, P. R., Drury, C. F. and Martin, R. C. 2011. Assessing soil nitrogen availability in contrasting cropping systems at the end of transition to organic production. Can. J. Soil Sci. 91: 493–501. Quantifying soil nitrogen (N) availability at the end of a transition...
Saved in:
Published in: | Canadian journal of soil science 2011-08, Vol.91 (4), p.493-501 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Liu, K., Hammermeister, A. M., Warman, P. R., Drury, C. F. and Martin, R. C. 2011. Assessing soil nitrogen availability in contrasting cropping systems at the end of transition to organic production. Can. J. Soil Sci. 91: 493–501. Quantifying soil nitrogen (N) availability at the end of a transition period for converting conventional fields to organic fields could enhance N management during the subsequent organic crop production phase. Soil total N (N
tot
), KCl extractable N (KCl N) and potentially mineralizable N (N
o
) were determined at the end of a 3-yr transition period. A complementary greenhouse ryegrass N bioassay was conducted using soils collected from the treated field plots. The field experiment consisted of six cropping systems comprising two N inputs (legume-based vs. manure-based) and three forage cropping treatments (0, 1 or 2 yr of forage in 4-yr rotations). The N input treatments consisted of alfalfa meal in the legume-based cropping system (LBCS) and composted beef manure in the manure-based cropping system (MBCS). Orthogonal contrasts suggested no differences in N
tot
or KCl N either between LBCS and MBCS or between no-forage and forage cropping systems. However, in the greenhouse study, high cumulative N inputs in the MBCS resulted in significantly higher ryegrass N uptake and potentially mineralizable soil N than in the LBCS. Ryegrass N uptake ranged from 101 to 139 kg ha
−1
, which should be an adequate N supply for the succeeding potato crop. In the greenhouse, a ryegrass N bioassay effectively identified the differences in soil N availability. Ryegrass N uptake was linearly related to cumulative soil amendment N inputs but had no apparent relationship with N
o
. A systems approach provided a good assessment of N availability at the end of the transition period to organic production. |
---|---|
ISSN: | 0008-4271 1918-1841 |
DOI: | 10.4141/cjss2010-039 |