Loading…

On the Principle of Duality in Lorentz Spaces

characterization of the spaces dual to weighted Lorentz spaces are given by means of reverse Hölder inequalities (Theorems 2.1, 2.2). This principle of duality is then applied to characterize weight functions for which the identity operator, the Hardy-Littlewood maximal operator and the Hilbert tran...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of mathematics 1996-10, Vol.48 (5), p.959-979
Main Authors: Gol'Dman, M. L., Heinig, H. P., Stepanov, V. D.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c318t-fc8616241f865c56f6c0f9b4640f5bac331a83bc1546bbf792a61ed31535d86a3
cites cdi_FETCH-LOGICAL-c318t-fc8616241f865c56f6c0f9b4640f5bac331a83bc1546bbf792a61ed31535d86a3
container_end_page 979
container_issue 5
container_start_page 959
container_title Canadian journal of mathematics
container_volume 48
creator Gol'Dman, M. L.
Heinig, H. P.
Stepanov, V. D.
description characterization of the spaces dual to weighted Lorentz spaces are given by means of reverse Hölder inequalities (Theorems 2.1, 2.2). This principle of duality is then applied to characterize weight functions for which the identity operator, the Hardy-Littlewood maximal operator and the Hilbert transform are bounded on weighted Lorentz spaces.
doi_str_mv 10.4153/CJM-1996-050-3
format article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4153_CJM_1996_050_3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4153_CJM_1996_050_3</cupid><sourcerecordid>10_4153_CJM_1996_050_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-fc8616241f865c56f6c0f9b4640f5bac331a83bc1546bbf792a61ed31535d86a3</originalsourceid><addsrcrecordid>eNp1jztPwzAYRS0EEqGwMvsPuPiLH01GVB4FBRUJkNgs27HBVZpEdjqUX48rujJd3eFc3YPQNdA5B8Fuls8vBOpaEiooYSeoAJ4LLxf1KSoopRXhwD_P0UVKm1yZFFAgsu7x9O3wawy9DWPn8ODx3U53Ydrj0ONmiK6ffvDbqK1Ll-jM6y65q2PO0MfD_ftyRZr149PytiGWQTURbysJsuTgKymskF5a6mvDJadeGG0ZA10xY0FwaYxf1KWW4FqWLURbSc1maP63a-OQUnRejTFsddwroOogq7KsOsiqLKtYBugR0FsTQ_vl1GbYxT6f_A_5BVSPVUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Principle of Duality in Lorentz Spaces</title><source>Freely Accessible Journals</source><creator>Gol'Dman, M. L. ; Heinig, H. P. ; Stepanov, V. D.</creator><creatorcontrib>Gol'Dman, M. L. ; Heinig, H. P. ; Stepanov, V. D.</creatorcontrib><description>characterization of the spaces dual to weighted Lorentz spaces are given by means of reverse Hölder inequalities (Theorems 2.1, 2.2). This principle of duality is then applied to characterize weight functions for which the identity operator, the Hardy-Littlewood maximal operator and the Hilbert transform are bounded on weighted Lorentz spaces.</description><identifier>ISSN: 0008-414X</identifier><identifier>EISSN: 1496-4279</identifier><identifier>DOI: 10.4153/CJM-1996-050-3</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Canadian journal of mathematics, 1996-10, Vol.48 (5), p.959-979</ispartof><rights>Copyright © Canadian Mathematical Society 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-fc8616241f865c56f6c0f9b4640f5bac331a83bc1546bbf792a61ed31535d86a3</citedby><cites>FETCH-LOGICAL-c318t-fc8616241f865c56f6c0f9b4640f5bac331a83bc1546bbf792a61ed31535d86a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gol'Dman, M. L.</creatorcontrib><creatorcontrib>Heinig, H. P.</creatorcontrib><creatorcontrib>Stepanov, V. D.</creatorcontrib><title>On the Principle of Duality in Lorentz Spaces</title><title>Canadian journal of mathematics</title><addtitle>Can. j. math</addtitle><description>characterization of the spaces dual to weighted Lorentz spaces are given by means of reverse Hölder inequalities (Theorems 2.1, 2.2). This principle of duality is then applied to characterize weight functions for which the identity operator, the Hardy-Littlewood maximal operator and the Hilbert transform are bounded on weighted Lorentz spaces.</description><issn>0008-414X</issn><issn>1496-4279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp1jztPwzAYRS0EEqGwMvsPuPiLH01GVB4FBRUJkNgs27HBVZpEdjqUX48rujJd3eFc3YPQNdA5B8Fuls8vBOpaEiooYSeoAJ4LLxf1KSoopRXhwD_P0UVKm1yZFFAgsu7x9O3wawy9DWPn8ODx3U53Ydrj0ONmiK6ffvDbqK1Ll-jM6y65q2PO0MfD_ftyRZr149PytiGWQTURbysJsuTgKymskF5a6mvDJadeGG0ZA10xY0FwaYxf1KWW4FqWLURbSc1maP63a-OQUnRejTFsddwroOogq7KsOsiqLKtYBugR0FsTQ_vl1GbYxT6f_A_5BVSPVUs</recordid><startdate>19961001</startdate><enddate>19961001</enddate><creator>Gol'Dman, M. L.</creator><creator>Heinig, H. P.</creator><creator>Stepanov, V. D.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19961001</creationdate><title>On the Principle of Duality in Lorentz Spaces</title><author>Gol'Dman, M. L. ; Heinig, H. P. ; Stepanov, V. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-fc8616241f865c56f6c0f9b4640f5bac331a83bc1546bbf792a61ed31535d86a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gol'Dman, M. L.</creatorcontrib><creatorcontrib>Heinig, H. P.</creatorcontrib><creatorcontrib>Stepanov, V. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Canadian journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gol'Dman, M. L.</au><au>Heinig, H. P.</au><au>Stepanov, V. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Principle of Duality in Lorentz Spaces</atitle><jtitle>Canadian journal of mathematics</jtitle><addtitle>Can. j. math</addtitle><date>1996-10-01</date><risdate>1996</risdate><volume>48</volume><issue>5</issue><spage>959</spage><epage>979</epage><pages>959-979</pages><issn>0008-414X</issn><eissn>1496-4279</eissn><abstract>characterization of the spaces dual to weighted Lorentz spaces are given by means of reverse Hölder inequalities (Theorems 2.1, 2.2). This principle of duality is then applied to characterize weight functions for which the identity operator, the Hardy-Littlewood maximal operator and the Hilbert transform are bounded on weighted Lorentz spaces.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.4153/CJM-1996-050-3</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-414X
ispartof Canadian journal of mathematics, 1996-10, Vol.48 (5), p.959-979
issn 0008-414X
1496-4279
language eng
recordid cdi_crossref_primary_10_4153_CJM_1996_050_3
source Freely Accessible Journals
title On the Principle of Duality in Lorentz Spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A26%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Principle%20of%20Duality%20in%20Lorentz%20Spaces&rft.jtitle=Canadian%20journal%20of%20mathematics&rft.au=Gol'Dman,%20M.%20L.&rft.date=1996-10-01&rft.volume=48&rft.issue=5&rft.spage=959&rft.epage=979&rft.pages=959-979&rft.issn=0008-414X&rft.eissn=1496-4279&rft_id=info:doi/10.4153/CJM-1996-050-3&rft_dat=%3Ccambridge_cross%3E10_4153_CJM_1996_050_3%3C/cambridge_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-fc8616241f865c56f6c0f9b4640f5bac331a83bc1546bbf792a61ed31535d86a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_4153_CJM_1996_050_3&rfr_iscdi=true