Loading…
On the Principle of Duality in Lorentz Spaces
characterization of the spaces dual to weighted Lorentz spaces are given by means of reverse Hölder inequalities (Theorems 2.1, 2.2). This principle of duality is then applied to characterize weight functions for which the identity operator, the Hardy-Littlewood maximal operator and the Hilbert tran...
Saved in:
Published in: | Canadian journal of mathematics 1996-10, Vol.48 (5), p.959-979 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c318t-fc8616241f865c56f6c0f9b4640f5bac331a83bc1546bbf792a61ed31535d86a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c318t-fc8616241f865c56f6c0f9b4640f5bac331a83bc1546bbf792a61ed31535d86a3 |
container_end_page | 979 |
container_issue | 5 |
container_start_page | 959 |
container_title | Canadian journal of mathematics |
container_volume | 48 |
creator | Gol'Dman, M. L. Heinig, H. P. Stepanov, V. D. |
description | characterization of the spaces dual to weighted Lorentz spaces are given by means of reverse Hölder inequalities (Theorems 2.1, 2.2). This principle of duality is then applied to characterize weight functions for which the identity operator, the Hardy-Littlewood maximal operator and the Hilbert transform are bounded on weighted Lorentz spaces. |
doi_str_mv | 10.4153/CJM-1996-050-3 |
format | article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4153_CJM_1996_050_3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4153_CJM_1996_050_3</cupid><sourcerecordid>10_4153_CJM_1996_050_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-fc8616241f865c56f6c0f9b4640f5bac331a83bc1546bbf792a61ed31535d86a3</originalsourceid><addsrcrecordid>eNp1jztPwzAYRS0EEqGwMvsPuPiLH01GVB4FBRUJkNgs27HBVZpEdjqUX48rujJd3eFc3YPQNdA5B8Fuls8vBOpaEiooYSeoAJ4LLxf1KSoopRXhwD_P0UVKm1yZFFAgsu7x9O3wawy9DWPn8ODx3U53Ydrj0ONmiK6ffvDbqK1Ll-jM6y65q2PO0MfD_ftyRZr149PytiGWQTURbysJsuTgKymskF5a6mvDJadeGG0ZA10xY0FwaYxf1KWW4FqWLURbSc1maP63a-OQUnRejTFsddwroOogq7KsOsiqLKtYBugR0FsTQ_vl1GbYxT6f_A_5BVSPVUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Principle of Duality in Lorentz Spaces</title><source>Freely Accessible Journals</source><creator>Gol'Dman, M. L. ; Heinig, H. P. ; Stepanov, V. D.</creator><creatorcontrib>Gol'Dman, M. L. ; Heinig, H. P. ; Stepanov, V. D.</creatorcontrib><description>characterization of the spaces dual to weighted Lorentz spaces are given by means of reverse Hölder inequalities (Theorems 2.1, 2.2). This principle of duality is then applied to characterize weight functions for which the identity operator, the Hardy-Littlewood maximal operator and the Hilbert transform are bounded on weighted Lorentz spaces.</description><identifier>ISSN: 0008-414X</identifier><identifier>EISSN: 1496-4279</identifier><identifier>DOI: 10.4153/CJM-1996-050-3</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Canadian journal of mathematics, 1996-10, Vol.48 (5), p.959-979</ispartof><rights>Copyright © Canadian Mathematical Society 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-fc8616241f865c56f6c0f9b4640f5bac331a83bc1546bbf792a61ed31535d86a3</citedby><cites>FETCH-LOGICAL-c318t-fc8616241f865c56f6c0f9b4640f5bac331a83bc1546bbf792a61ed31535d86a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gol'Dman, M. L.</creatorcontrib><creatorcontrib>Heinig, H. P.</creatorcontrib><creatorcontrib>Stepanov, V. D.</creatorcontrib><title>On the Principle of Duality in Lorentz Spaces</title><title>Canadian journal of mathematics</title><addtitle>Can. j. math</addtitle><description>characterization of the spaces dual to weighted Lorentz spaces are given by means of reverse Hölder inequalities (Theorems 2.1, 2.2). This principle of duality is then applied to characterize weight functions for which the identity operator, the Hardy-Littlewood maximal operator and the Hilbert transform are bounded on weighted Lorentz spaces.</description><issn>0008-414X</issn><issn>1496-4279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp1jztPwzAYRS0EEqGwMvsPuPiLH01GVB4FBRUJkNgs27HBVZpEdjqUX48rujJd3eFc3YPQNdA5B8Fuls8vBOpaEiooYSeoAJ4LLxf1KSoopRXhwD_P0UVKm1yZFFAgsu7x9O3wawy9DWPn8ODx3U53Ydrj0ONmiK6ffvDbqK1Ll-jM6y65q2PO0MfD_ftyRZr149PytiGWQTURbysJsuTgKymskF5a6mvDJadeGG0ZA10xY0FwaYxf1KWW4FqWLURbSc1maP63a-OQUnRejTFsddwroOogq7KsOsiqLKtYBugR0FsTQ_vl1GbYxT6f_A_5BVSPVUs</recordid><startdate>19961001</startdate><enddate>19961001</enddate><creator>Gol'Dman, M. L.</creator><creator>Heinig, H. P.</creator><creator>Stepanov, V. D.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19961001</creationdate><title>On the Principle of Duality in Lorentz Spaces</title><author>Gol'Dman, M. L. ; Heinig, H. P. ; Stepanov, V. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-fc8616241f865c56f6c0f9b4640f5bac331a83bc1546bbf792a61ed31535d86a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gol'Dman, M. L.</creatorcontrib><creatorcontrib>Heinig, H. P.</creatorcontrib><creatorcontrib>Stepanov, V. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Canadian journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gol'Dman, M. L.</au><au>Heinig, H. P.</au><au>Stepanov, V. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Principle of Duality in Lorentz Spaces</atitle><jtitle>Canadian journal of mathematics</jtitle><addtitle>Can. j. math</addtitle><date>1996-10-01</date><risdate>1996</risdate><volume>48</volume><issue>5</issue><spage>959</spage><epage>979</epage><pages>959-979</pages><issn>0008-414X</issn><eissn>1496-4279</eissn><abstract>characterization of the spaces dual to weighted Lorentz spaces are given by means of reverse Hölder inequalities (Theorems 2.1, 2.2). This principle of duality is then applied to characterize weight functions for which the identity operator, the Hardy-Littlewood maximal operator and the Hilbert transform are bounded on weighted Lorentz spaces.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.4153/CJM-1996-050-3</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-414X |
ispartof | Canadian journal of mathematics, 1996-10, Vol.48 (5), p.959-979 |
issn | 0008-414X 1496-4279 |
language | eng |
recordid | cdi_crossref_primary_10_4153_CJM_1996_050_3 |
source | Freely Accessible Journals |
title | On the Principle of Duality in Lorentz Spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A26%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Principle%20of%20Duality%20in%20Lorentz%20Spaces&rft.jtitle=Canadian%20journal%20of%20mathematics&rft.au=Gol'Dman,%20M.%20L.&rft.date=1996-10-01&rft.volume=48&rft.issue=5&rft.spage=959&rft.epage=979&rft.pages=959-979&rft.issn=0008-414X&rft.eissn=1496-4279&rft_id=info:doi/10.4153/CJM-1996-050-3&rft_dat=%3Ccambridge_cross%3E10_4153_CJM_1996_050_3%3C/cambridge_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-fc8616241f865c56f6c0f9b4640f5bac331a83bc1546bbf792a61ed31535d86a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_4153_CJM_1996_050_3&rfr_iscdi=true |