Loading…
Quotient Hereditarily Indecomposable Banach Spaces
A Banach space $X$ is said to be quotient hereditarily indecomposable if no infinite dimensional quotient of a subspace of $X$ is decomposable. We provide an example of a quotient hereditarily indecomposable space, namely the space ${{X}_{GM}}$ constructed by W. T. Gowers and B. Maurey in $[\text{GM...
Saved in:
Published in: | Canadian journal of mathematics 1999-06, Vol.51 (3), p.566-584 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c318t-f24c4569ee0b1228ab03985245ea9c3703606ece3a579dfbdc0a219833ffc143 |
---|---|
cites | cdi_FETCH-LOGICAL-c318t-f24c4569ee0b1228ab03985245ea9c3703606ece3a579dfbdc0a219833ffc143 |
container_end_page | 584 |
container_issue | 3 |
container_start_page | 566 |
container_title | Canadian journal of mathematics |
container_volume | 51 |
creator | Ferenczi, V. |
description | A Banach space
$X$
is said to be quotient hereditarily indecomposable if no infinite dimensional quotient of a subspace of
$X$
is decomposable. We provide an example of a quotient hereditarily indecomposable space, namely the space
${{X}_{GM}}$
constructed by W. T. Gowers and B. Maurey in
$[\text{GM}]$
. Then we provide an example of a reflexive hereditarily indecomposable space
$\hat{X}$
whose dual is not hereditarily indecomposable; so
$\hat{X}$
is not quotient hereditarily indecomposable. We also show that every operator on
${{\hat{X}}^{*}}$
is a strictly singular perturbation of an homothetic map. |
doi_str_mv | 10.4153/CJM-1999-026-4 |
format | article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4153_CJM_1999_026_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4153_CJM_1999_026_4</cupid><sourcerecordid>10_4153_CJM_1999_026_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-f24c4569ee0b1228ab03985245ea9c3703606ece3a579dfbdc0a219833ffc143</originalsourceid><addsrcrecordid>eNp1jztPwzAUhS0EEqGwMucPuPiVh0eogBYVIUQHNuvGuYZUeclOh_57HLUr07ln-K7OR8g9Z0vFM_mwenunXGtNmcipuiAJVzoeotCXJGGMlVRx9X1NbkLYxyrzjCdEfB6GqcF-StfosW4m8E17TDd9jXboxiFA1WL6BD3Y3_RrBIvhllw5aAPenXNBdi_Pu9Wabj9eN6vHLbWSlxN1QlmV5RqRVVyIEiomdZkJlSFoK4s4gOVoUUJW6NpVtWUguC6ldM5yJRdkeXpr_RCCR2dG33Tgj4YzMwubKGxmYROFzQywMwBd5Zv6B81-OPg-bvwP-QPdB1fR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quotient Hereditarily Indecomposable Banach Spaces</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><creator>Ferenczi, V.</creator><creatorcontrib>Ferenczi, V.</creatorcontrib><description>A Banach space
$X$
is said to be quotient hereditarily indecomposable if no infinite dimensional quotient of a subspace of
$X$
is decomposable. We provide an example of a quotient hereditarily indecomposable space, namely the space
${{X}_{GM}}$
constructed by W. T. Gowers and B. Maurey in
$[\text{GM}]$
. Then we provide an example of a reflexive hereditarily indecomposable space
$\hat{X}$
whose dual is not hereditarily indecomposable; so
$\hat{X}$
is not quotient hereditarily indecomposable. We also show that every operator on
${{\hat{X}}^{*}}$
is a strictly singular perturbation of an homothetic map.</description><identifier>ISSN: 0008-414X</identifier><identifier>EISSN: 1496-4279</identifier><identifier>DOI: 10.4153/CJM-1999-026-4</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Canadian journal of mathematics, 1999-06, Vol.51 (3), p.566-584</ispartof><rights>Copyright © Canadian Mathematical Society 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-f24c4569ee0b1228ab03985245ea9c3703606ece3a579dfbdc0a219833ffc143</citedby><cites>FETCH-LOGICAL-c318t-f24c4569ee0b1228ab03985245ea9c3703606ece3a579dfbdc0a219833ffc143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ferenczi, V.</creatorcontrib><title>Quotient Hereditarily Indecomposable Banach Spaces</title><title>Canadian journal of mathematics</title><addtitle>Can. j. math</addtitle><description>A Banach space
$X$
is said to be quotient hereditarily indecomposable if no infinite dimensional quotient of a subspace of
$X$
is decomposable. We provide an example of a quotient hereditarily indecomposable space, namely the space
${{X}_{GM}}$
constructed by W. T. Gowers and B. Maurey in
$[\text{GM}]$
. Then we provide an example of a reflexive hereditarily indecomposable space
$\hat{X}$
whose dual is not hereditarily indecomposable; so
$\hat{X}$
is not quotient hereditarily indecomposable. We also show that every operator on
${{\hat{X}}^{*}}$
is a strictly singular perturbation of an homothetic map.</description><issn>0008-414X</issn><issn>1496-4279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1jztPwzAUhS0EEqGwMucPuPiVh0eogBYVIUQHNuvGuYZUeclOh_57HLUr07ln-K7OR8g9Z0vFM_mwenunXGtNmcipuiAJVzoeotCXJGGMlVRx9X1NbkLYxyrzjCdEfB6GqcF-StfosW4m8E17TDd9jXboxiFA1WL6BD3Y3_RrBIvhllw5aAPenXNBdi_Pu9Wabj9eN6vHLbWSlxN1QlmV5RqRVVyIEiomdZkJlSFoK4s4gOVoUUJW6NpVtWUguC6ldM5yJRdkeXpr_RCCR2dG33Tgj4YzMwubKGxmYROFzQywMwBd5Zv6B81-OPg-bvwP-QPdB1fR</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Ferenczi, V.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990601</creationdate><title>Quotient Hereditarily Indecomposable Banach Spaces</title><author>Ferenczi, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-f24c4569ee0b1228ab03985245ea9c3703606ece3a579dfbdc0a219833ffc143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferenczi, V.</creatorcontrib><collection>CrossRef</collection><jtitle>Canadian journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferenczi, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quotient Hereditarily Indecomposable Banach Spaces</atitle><jtitle>Canadian journal of mathematics</jtitle><addtitle>Can. j. math</addtitle><date>1999-06-01</date><risdate>1999</risdate><volume>51</volume><issue>3</issue><spage>566</spage><epage>584</epage><pages>566-584</pages><issn>0008-414X</issn><eissn>1496-4279</eissn><abstract>A Banach space
$X$
is said to be quotient hereditarily indecomposable if no infinite dimensional quotient of a subspace of
$X$
is decomposable. We provide an example of a quotient hereditarily indecomposable space, namely the space
${{X}_{GM}}$
constructed by W. T. Gowers and B. Maurey in
$[\text{GM}]$
. Then we provide an example of a reflexive hereditarily indecomposable space
$\hat{X}$
whose dual is not hereditarily indecomposable; so
$\hat{X}$
is not quotient hereditarily indecomposable. We also show that every operator on
${{\hat{X}}^{*}}$
is a strictly singular perturbation of an homothetic map.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.4153/CJM-1999-026-4</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-414X |
ispartof | Canadian journal of mathematics, 1999-06, Vol.51 (3), p.566-584 |
issn | 0008-414X 1496-4279 |
language | eng |
recordid | cdi_crossref_primary_10_4153_CJM_1999_026_4 |
source | Freely Accessible Science Journals - check A-Z of ejournals |
title | Quotient Hereditarily Indecomposable Banach Spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quotient%20Hereditarily%20Indecomposable%20Banach%20Spaces&rft.jtitle=Canadian%20journal%20of%20mathematics&rft.au=Ferenczi,%20V.&rft.date=1999-06-01&rft.volume=51&rft.issue=3&rft.spage=566&rft.epage=584&rft.pages=566-584&rft.issn=0008-414X&rft.eissn=1496-4279&rft_id=info:doi/10.4153/CJM-1999-026-4&rft_dat=%3Ccambridge_cross%3E10_4153_CJM_1999_026_4%3C/cambridge_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-f24c4569ee0b1228ab03985245ea9c3703606ece3a579dfbdc0a219833ffc143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_4153_CJM_1999_026_4&rfr_iscdi=true |