Loading…

Quotient Hereditarily Indecomposable Banach Spaces

A Banach space $X$ is said to be quotient hereditarily indecomposable if no infinite dimensional quotient of a subspace of $X$ is decomposable. We provide an example of a quotient hereditarily indecomposable space, namely the space ${{X}_{GM}}$ constructed by W. T. Gowers and B. Maurey in $[\text{GM...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of mathematics 1999-06, Vol.51 (3), p.566-584
Main Author: Ferenczi, V.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c318t-f24c4569ee0b1228ab03985245ea9c3703606ece3a579dfbdc0a219833ffc143
cites cdi_FETCH-LOGICAL-c318t-f24c4569ee0b1228ab03985245ea9c3703606ece3a579dfbdc0a219833ffc143
container_end_page 584
container_issue 3
container_start_page 566
container_title Canadian journal of mathematics
container_volume 51
creator Ferenczi, V.
description A Banach space $X$ is said to be quotient hereditarily indecomposable if no infinite dimensional quotient of a subspace of $X$ is decomposable. We provide an example of a quotient hereditarily indecomposable space, namely the space ${{X}_{GM}}$ constructed by W. T. Gowers and B. Maurey in $[\text{GM}]$ . Then we provide an example of a reflexive hereditarily indecomposable space $\hat{X}$ whose dual is not hereditarily indecomposable; so $\hat{X}$ is not quotient hereditarily indecomposable. We also show that every operator on ${{\hat{X}}^{*}}$ is a strictly singular perturbation of an homothetic map.
doi_str_mv 10.4153/CJM-1999-026-4
format article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4153_CJM_1999_026_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4153_CJM_1999_026_4</cupid><sourcerecordid>10_4153_CJM_1999_026_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-f24c4569ee0b1228ab03985245ea9c3703606ece3a579dfbdc0a219833ffc143</originalsourceid><addsrcrecordid>eNp1jztPwzAUhS0EEqGwMucPuPiVh0eogBYVIUQHNuvGuYZUeclOh_57HLUr07ln-K7OR8g9Z0vFM_mwenunXGtNmcipuiAJVzoeotCXJGGMlVRx9X1NbkLYxyrzjCdEfB6GqcF-StfosW4m8E17TDd9jXboxiFA1WL6BD3Y3_RrBIvhllw5aAPenXNBdi_Pu9Wabj9eN6vHLbWSlxN1QlmV5RqRVVyIEiomdZkJlSFoK4s4gOVoUUJW6NpVtWUguC6ldM5yJRdkeXpr_RCCR2dG33Tgj4YzMwubKGxmYROFzQywMwBd5Zv6B81-OPg-bvwP-QPdB1fR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quotient Hereditarily Indecomposable Banach Spaces</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><creator>Ferenczi, V.</creator><creatorcontrib>Ferenczi, V.</creatorcontrib><description>A Banach space $X$ is said to be quotient hereditarily indecomposable if no infinite dimensional quotient of a subspace of $X$ is decomposable. We provide an example of a quotient hereditarily indecomposable space, namely the space ${{X}_{GM}}$ constructed by W. T. Gowers and B. Maurey in $[\text{GM}]$ . Then we provide an example of a reflexive hereditarily indecomposable space $\hat{X}$ whose dual is not hereditarily indecomposable; so $\hat{X}$ is not quotient hereditarily indecomposable. We also show that every operator on ${{\hat{X}}^{*}}$ is a strictly singular perturbation of an homothetic map.</description><identifier>ISSN: 0008-414X</identifier><identifier>EISSN: 1496-4279</identifier><identifier>DOI: 10.4153/CJM-1999-026-4</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Canadian journal of mathematics, 1999-06, Vol.51 (3), p.566-584</ispartof><rights>Copyright © Canadian Mathematical Society 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-f24c4569ee0b1228ab03985245ea9c3703606ece3a579dfbdc0a219833ffc143</citedby><cites>FETCH-LOGICAL-c318t-f24c4569ee0b1228ab03985245ea9c3703606ece3a579dfbdc0a219833ffc143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ferenczi, V.</creatorcontrib><title>Quotient Hereditarily Indecomposable Banach Spaces</title><title>Canadian journal of mathematics</title><addtitle>Can. j. math</addtitle><description>A Banach space $X$ is said to be quotient hereditarily indecomposable if no infinite dimensional quotient of a subspace of $X$ is decomposable. We provide an example of a quotient hereditarily indecomposable space, namely the space ${{X}_{GM}}$ constructed by W. T. Gowers and B. Maurey in $[\text{GM}]$ . Then we provide an example of a reflexive hereditarily indecomposable space $\hat{X}$ whose dual is not hereditarily indecomposable; so $\hat{X}$ is not quotient hereditarily indecomposable. We also show that every operator on ${{\hat{X}}^{*}}$ is a strictly singular perturbation of an homothetic map.</description><issn>0008-414X</issn><issn>1496-4279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1jztPwzAUhS0EEqGwMucPuPiVh0eogBYVIUQHNuvGuYZUeclOh_57HLUr07ln-K7OR8g9Z0vFM_mwenunXGtNmcipuiAJVzoeotCXJGGMlVRx9X1NbkLYxyrzjCdEfB6GqcF-StfosW4m8E17TDd9jXboxiFA1WL6BD3Y3_RrBIvhllw5aAPenXNBdi_Pu9Wabj9eN6vHLbWSlxN1QlmV5RqRVVyIEiomdZkJlSFoK4s4gOVoUUJW6NpVtWUguC6ldM5yJRdkeXpr_RCCR2dG33Tgj4YzMwubKGxmYROFzQywMwBd5Zv6B81-OPg-bvwP-QPdB1fR</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Ferenczi, V.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990601</creationdate><title>Quotient Hereditarily Indecomposable Banach Spaces</title><author>Ferenczi, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-f24c4569ee0b1228ab03985245ea9c3703606ece3a579dfbdc0a219833ffc143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferenczi, V.</creatorcontrib><collection>CrossRef</collection><jtitle>Canadian journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferenczi, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quotient Hereditarily Indecomposable Banach Spaces</atitle><jtitle>Canadian journal of mathematics</jtitle><addtitle>Can. j. math</addtitle><date>1999-06-01</date><risdate>1999</risdate><volume>51</volume><issue>3</issue><spage>566</spage><epage>584</epage><pages>566-584</pages><issn>0008-414X</issn><eissn>1496-4279</eissn><abstract>A Banach space $X$ is said to be quotient hereditarily indecomposable if no infinite dimensional quotient of a subspace of $X$ is decomposable. We provide an example of a quotient hereditarily indecomposable space, namely the space ${{X}_{GM}}$ constructed by W. T. Gowers and B. Maurey in $[\text{GM}]$ . Then we provide an example of a reflexive hereditarily indecomposable space $\hat{X}$ whose dual is not hereditarily indecomposable; so $\hat{X}$ is not quotient hereditarily indecomposable. We also show that every operator on ${{\hat{X}}^{*}}$ is a strictly singular perturbation of an homothetic map.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.4153/CJM-1999-026-4</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-414X
ispartof Canadian journal of mathematics, 1999-06, Vol.51 (3), p.566-584
issn 0008-414X
1496-4279
language eng
recordid cdi_crossref_primary_10_4153_CJM_1999_026_4
source Freely Accessible Science Journals - check A-Z of ejournals
title Quotient Hereditarily Indecomposable Banach Spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quotient%20Hereditarily%20Indecomposable%20Banach%20Spaces&rft.jtitle=Canadian%20journal%20of%20mathematics&rft.au=Ferenczi,%20V.&rft.date=1999-06-01&rft.volume=51&rft.issue=3&rft.spage=566&rft.epage=584&rft.pages=566-584&rft.issn=0008-414X&rft.eissn=1496-4279&rft_id=info:doi/10.4153/CJM-1999-026-4&rft_dat=%3Ccambridge_cross%3E10_4153_CJM_1999_026_4%3C/cambridge_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-f24c4569ee0b1228ab03985245ea9c3703606ece3a579dfbdc0a219833ffc143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_4153_CJM_1999_026_4&rfr_iscdi=true