Loading…

Global Well-Posedness and Convergence Results for the 3D-Regularized Boussinesq System

Analytical study of the regularization of the Boussinesq system is performed in frequency space using Fourier theory. Existence and uniqueness of weak solutions with minimum regularity requirement are proved. Convergence results of the unique weak solution of the regularized Boussinesq system to a w...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of mathematics 2012-12, Vol.64 (6), p.1415-1435
Main Author: Selmi, Ridha
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c320t-d5ab3ead7c674cb77a8dbff708a4a1925374b7ce7e70720bd07f4ef5ed6b75083
cites cdi_FETCH-LOGICAL-c320t-d5ab3ead7c674cb77a8dbff708a4a1925374b7ce7e70720bd07f4ef5ed6b75083
container_end_page 1435
container_issue 6
container_start_page 1415
container_title Canadian journal of mathematics
container_volume 64
creator Selmi, Ridha
description Analytical study of the regularization of the Boussinesq system is performed in frequency space using Fourier theory. Existence and uniqueness of weak solutions with minimum regularity requirement are proved. Convergence results of the unique weak solution of the regularized Boussinesq system to a weak Leray–Hopf solution of the Boussinesq system are established as the regularizing parameter $\alpha$ vanishes. The proofs are done in the frequency space and use energy methods, the Arselà-Ascoli compactness theorem and a Friedrichs-like approximation scheme.
doi_str_mv 10.4153/CJM-2012-013-5
format article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4153_CJM_2012_013_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4153_CJM_2012_013_5</cupid><sourcerecordid>10_4153_CJM_2012_013_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-d5ab3ead7c674cb77a8dbff708a4a1925374b7ce7e70720bd07f4ef5ed6b75083</originalsourceid><addsrcrecordid>eNp1kL1OwzAYRS0EEqWwMvsFXOzYjtMRAhRQEaj8bpYdfy6p0hjsBKk8PanoynR1h3N1dRA6ZXQimORn5d09ySjLCGWcyD00YmKaE5Gp6T4aUUoLIph4P0RHKa2GynPJRuh11gRrGvwGTUMeQwLXQkrYtA6Xof2GuIS2AryA1Dddwj5E3H0A5pdkAcu-MbH-AYcvQp9SPZBf-GmTOlgfowNvmgQnuxyjl-ur5_KGzB9mt-X5nFQ8ox1x0lgOxqkqV6KySpnCWe8VLYwwbJpJroRVFShQVGXUOqq8AC_B5VZJWvAxmvztVjGkFMHrz1ivTdxoRvXWih6s6K0VPVjRcgDoDjBrG2u3BL0KfWyHk_8hvwnYZas</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Global Well-Posedness and Convergence Results for the 3D-Regularized Boussinesq System</title><source>Freely Accessible Science Journals</source><creator>Selmi, Ridha</creator><creatorcontrib>Selmi, Ridha</creatorcontrib><description>Analytical study of the regularization of the Boussinesq system is performed in frequency space using Fourier theory. Existence and uniqueness of weak solutions with minimum regularity requirement are proved. Convergence results of the unique weak solution of the regularized Boussinesq system to a weak Leray–Hopf solution of the Boussinesq system are established as the regularizing parameter $\alpha$ vanishes. The proofs are done in the frequency space and use energy methods, the Arselà-Ascoli compactness theorem and a Friedrichs-like approximation scheme.</description><identifier>ISSN: 0008-414X</identifier><identifier>EISSN: 1496-4279</identifier><identifier>DOI: 10.4153/CJM-2012-013-5</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Canadian journal of mathematics, 2012-12, Vol.64 (6), p.1415-1435</ispartof><rights>Copyright © Canadian Mathematical Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-d5ab3ead7c674cb77a8dbff708a4a1925374b7ce7e70720bd07f4ef5ed6b75083</citedby><cites>FETCH-LOGICAL-c320t-d5ab3ead7c674cb77a8dbff708a4a1925374b7ce7e70720bd07f4ef5ed6b75083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Selmi, Ridha</creatorcontrib><title>Global Well-Posedness and Convergence Results for the 3D-Regularized Boussinesq System</title><title>Canadian journal of mathematics</title><addtitle>Can. j. math</addtitle><description>Analytical study of the regularization of the Boussinesq system is performed in frequency space using Fourier theory. Existence and uniqueness of weak solutions with minimum regularity requirement are proved. Convergence results of the unique weak solution of the regularized Boussinesq system to a weak Leray–Hopf solution of the Boussinesq system are established as the regularizing parameter $\alpha$ vanishes. The proofs are done in the frequency space and use energy methods, the Arselà-Ascoli compactness theorem and a Friedrichs-like approximation scheme.</description><issn>0008-414X</issn><issn>1496-4279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAYRS0EEqWwMvsFXOzYjtMRAhRQEaj8bpYdfy6p0hjsBKk8PanoynR1h3N1dRA6ZXQimORn5d09ySjLCGWcyD00YmKaE5Gp6T4aUUoLIph4P0RHKa2GynPJRuh11gRrGvwGTUMeQwLXQkrYtA6Xof2GuIS2AryA1Dddwj5E3H0A5pdkAcu-MbH-AYcvQp9SPZBf-GmTOlgfowNvmgQnuxyjl-ur5_KGzB9mt-X5nFQ8ox1x0lgOxqkqV6KySpnCWe8VLYwwbJpJroRVFShQVGXUOqq8AC_B5VZJWvAxmvztVjGkFMHrz1ivTdxoRvXWih6s6K0VPVjRcgDoDjBrG2u3BL0KfWyHk_8hvwnYZas</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Selmi, Ridha</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121201</creationdate><title>Global Well-Posedness and Convergence Results for the 3D-Regularized Boussinesq System</title><author>Selmi, Ridha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-d5ab3ead7c674cb77a8dbff708a4a1925374b7ce7e70720bd07f4ef5ed6b75083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selmi, Ridha</creatorcontrib><collection>CrossRef</collection><jtitle>Canadian journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selmi, Ridha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Well-Posedness and Convergence Results for the 3D-Regularized Boussinesq System</atitle><jtitle>Canadian journal of mathematics</jtitle><addtitle>Can. j. math</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>64</volume><issue>6</issue><spage>1415</spage><epage>1435</epage><pages>1415-1435</pages><issn>0008-414X</issn><eissn>1496-4279</eissn><abstract>Analytical study of the regularization of the Boussinesq system is performed in frequency space using Fourier theory. Existence and uniqueness of weak solutions with minimum regularity requirement are proved. Convergence results of the unique weak solution of the regularized Boussinesq system to a weak Leray–Hopf solution of the Boussinesq system are established as the regularizing parameter $\alpha$ vanishes. The proofs are done in the frequency space and use energy methods, the Arselà-Ascoli compactness theorem and a Friedrichs-like approximation scheme.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.4153/CJM-2012-013-5</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-414X
ispartof Canadian journal of mathematics, 2012-12, Vol.64 (6), p.1415-1435
issn 0008-414X
1496-4279
language eng
recordid cdi_crossref_primary_10_4153_CJM_2012_013_5
source Freely Accessible Science Journals
title Global Well-Posedness and Convergence Results for the 3D-Regularized Boussinesq System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Well-Posedness%20and%20Convergence%20Results%20for%20the%203D-Regularized%20Boussinesq%20System&rft.jtitle=Canadian%20journal%20of%20mathematics&rft.au=Selmi,%20Ridha&rft.date=2012-12-01&rft.volume=64&rft.issue=6&rft.spage=1415&rft.epage=1435&rft.pages=1415-1435&rft.issn=0008-414X&rft.eissn=1496-4279&rft_id=info:doi/10.4153/CJM-2012-013-5&rft_dat=%3Ccambridge_cross%3E10_4153_CJM_2012_013_5%3C/cambridge_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-d5ab3ead7c674cb77a8dbff708a4a1925374b7ce7e70720bd07f4ef5ed6b75083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_4153_CJM_2012_013_5&rfr_iscdi=true