Loading…
AutoQSAR: an automated machine learning tool for best-practice quantitative structure-activity relationship modeling
We introduce AutoQSAR, an automated machine-learning application to build, validate and deploy quantitative structure-activity relationship (QSAR) models. The process of descriptor generation, feature selection and the creation of a large number of QSAR models has been automated into a single workfl...
Saved in:
Published in: | Future medicinal chemistry 2016-10, Vol.8 (15), p.1825-1839 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-81b9e0eb026a36c991b447f842be18c49343e14b1db227f71cc9d13af4f289513 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-81b9e0eb026a36c991b447f842be18c49343e14b1db227f71cc9d13af4f289513 |
container_end_page | 1839 |
container_issue | 15 |
container_start_page | 1825 |
container_title | Future medicinal chemistry |
container_volume | 8 |
creator | Dixon, Steven L Duan, Jianxin Smith, Ethan Von Bargen, Christopher D Sherman, Woody Repasky, Matthew P |
description | We introduce AutoQSAR, an automated machine-learning application to build, validate and deploy quantitative structure-activity relationship (QSAR) models.
The process of descriptor generation, feature selection and the creation of a large number of QSAR models has been automated into a single workflow within AutoQSAR. The models are built using a variety of machine-learning methods, and each model is scored using a novel approach. Effectiveness of the method is demonstrated through comparison with literature QSAR models using identical datasets for six end points: protein-ligand binding affinity, solubility, blood-brain barrier permeability, carcinogenicity, mutagenicity and bioaccumulation in fish.
AutoQSAR demonstrates similar or better predictive performance as compared with published results for four of the six endpoints while requiring minimal human time and expertise. |
doi_str_mv | 10.4155/fmc-2016-0093 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4155_fmc_2016_0093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27643715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-81b9e0eb026a36c991b447f842be18c49343e14b1db227f71cc9d13af4f289513</originalsourceid><addsrcrecordid>eNp1kEtLAzEQx4MottQevUq-QDTZzT7irRRfUBBf5yXJTmxkHzXJFvrtzbLam7lMhvnNH-aH0CWj15xl2Y1pNUkoywmlIj1Bc1ZkOSlFUpwe_0zM0NL7LxpfmpQiz87RLClynhYsm6OwGkL_8rZ6vcWywzI2rQxQ41bqre0ANyBdZ7tPHPq-waZ3WIEPZOekDlYD_h5kF2yQwe4B--AGHQYHZJzubThgB02c9Z3f2h1u-xqaGHaBzoxsPCx_6wJ93N-9rx_J5vnhab3aEJ3yNJCSKQEUFE1ymeZaCKY4L0zJEwWs1FxEChhXrFZJUpiCaS1qlkrDTTw0Y-kCkSlXu957B6baOdtKd6gYrUaBVRRYjQKrUWDkryZ-N6gW6iP9pysCYgLMMJ7ptYVOQzV1ccPq6Oyf8B8kCYHX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AutoQSAR: an automated machine learning tool for best-practice quantitative structure-activity relationship modeling</title><source>PMC</source><creator>Dixon, Steven L ; Duan, Jianxin ; Smith, Ethan ; Von Bargen, Christopher D ; Sherman, Woody ; Repasky, Matthew P</creator><creatorcontrib>Dixon, Steven L ; Duan, Jianxin ; Smith, Ethan ; Von Bargen, Christopher D ; Sherman, Woody ; Repasky, Matthew P</creatorcontrib><description>We introduce AutoQSAR, an automated machine-learning application to build, validate and deploy quantitative structure-activity relationship (QSAR) models.
The process of descriptor generation, feature selection and the creation of a large number of QSAR models has been automated into a single workflow within AutoQSAR. The models are built using a variety of machine-learning methods, and each model is scored using a novel approach. Effectiveness of the method is demonstrated through comparison with literature QSAR models using identical datasets for six end points: protein-ligand binding affinity, solubility, blood-brain barrier permeability, carcinogenicity, mutagenicity and bioaccumulation in fish.
AutoQSAR demonstrates similar or better predictive performance as compared with published results for four of the six endpoints while requiring minimal human time and expertise.</description><identifier>ISSN: 1756-8919</identifier><identifier>EISSN: 1756-8927</identifier><identifier>DOI: 10.4155/fmc-2016-0093</identifier><identifier>PMID: 27643715</identifier><language>eng</language><publisher>England: Future Science Ltd</publisher><subject>binding affinity prediction ; blood-brain barrier permeability ; carcinogenicity ; fish bioconcentration factor ; mutagenicity ; QSAR ; solubility</subject><ispartof>Future medicinal chemistry, 2016-10, Vol.8 (15), p.1825-1839</ispartof><rights>Future Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-81b9e0eb026a36c991b447f842be18c49343e14b1db227f71cc9d13af4f289513</citedby><cites>FETCH-LOGICAL-c343t-81b9e0eb026a36c991b447f842be18c49343e14b1db227f71cc9d13af4f289513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27643715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dixon, Steven L</creatorcontrib><creatorcontrib>Duan, Jianxin</creatorcontrib><creatorcontrib>Smith, Ethan</creatorcontrib><creatorcontrib>Von Bargen, Christopher D</creatorcontrib><creatorcontrib>Sherman, Woody</creatorcontrib><creatorcontrib>Repasky, Matthew P</creatorcontrib><title>AutoQSAR: an automated machine learning tool for best-practice quantitative structure-activity relationship modeling</title><title>Future medicinal chemistry</title><addtitle>Future Med Chem</addtitle><description>We introduce AutoQSAR, an automated machine-learning application to build, validate and deploy quantitative structure-activity relationship (QSAR) models.
The process of descriptor generation, feature selection and the creation of a large number of QSAR models has been automated into a single workflow within AutoQSAR. The models are built using a variety of machine-learning methods, and each model is scored using a novel approach. Effectiveness of the method is demonstrated through comparison with literature QSAR models using identical datasets for six end points: protein-ligand binding affinity, solubility, blood-brain barrier permeability, carcinogenicity, mutagenicity and bioaccumulation in fish.
AutoQSAR demonstrates similar or better predictive performance as compared with published results for four of the six endpoints while requiring minimal human time and expertise.</description><subject>binding affinity prediction</subject><subject>blood-brain barrier permeability</subject><subject>carcinogenicity</subject><subject>fish bioconcentration factor</subject><subject>mutagenicity</subject><subject>QSAR</subject><subject>solubility</subject><issn>1756-8919</issn><issn>1756-8927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEQx4MottQevUq-QDTZzT7irRRfUBBf5yXJTmxkHzXJFvrtzbLam7lMhvnNH-aH0CWj15xl2Y1pNUkoywmlIj1Bc1ZkOSlFUpwe_0zM0NL7LxpfmpQiz87RLClynhYsm6OwGkL_8rZ6vcWywzI2rQxQ41bqre0ANyBdZ7tPHPq-waZ3WIEPZOekDlYD_h5kF2yQwe4B--AGHQYHZJzubThgB02c9Z3f2h1u-xqaGHaBzoxsPCx_6wJ93N-9rx_J5vnhab3aEJ3yNJCSKQEUFE1ymeZaCKY4L0zJEwWs1FxEChhXrFZJUpiCaS1qlkrDTTw0Y-kCkSlXu957B6baOdtKd6gYrUaBVRRYjQKrUWDkryZ-N6gW6iP9pysCYgLMMJ7ptYVOQzV1ccPq6Oyf8B8kCYHX</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Dixon, Steven L</creator><creator>Duan, Jianxin</creator><creator>Smith, Ethan</creator><creator>Von Bargen, Christopher D</creator><creator>Sherman, Woody</creator><creator>Repasky, Matthew P</creator><general>Future Science Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>AutoQSAR: an automated machine learning tool for best-practice quantitative structure-activity relationship modeling</title><author>Dixon, Steven L ; Duan, Jianxin ; Smith, Ethan ; Von Bargen, Christopher D ; Sherman, Woody ; Repasky, Matthew P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-81b9e0eb026a36c991b447f842be18c49343e14b1db227f71cc9d13af4f289513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>binding affinity prediction</topic><topic>blood-brain barrier permeability</topic><topic>carcinogenicity</topic><topic>fish bioconcentration factor</topic><topic>mutagenicity</topic><topic>QSAR</topic><topic>solubility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dixon, Steven L</creatorcontrib><creatorcontrib>Duan, Jianxin</creatorcontrib><creatorcontrib>Smith, Ethan</creatorcontrib><creatorcontrib>Von Bargen, Christopher D</creatorcontrib><creatorcontrib>Sherman, Woody</creatorcontrib><creatorcontrib>Repasky, Matthew P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Future medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dixon, Steven L</au><au>Duan, Jianxin</au><au>Smith, Ethan</au><au>Von Bargen, Christopher D</au><au>Sherman, Woody</au><au>Repasky, Matthew P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AutoQSAR: an automated machine learning tool for best-practice quantitative structure-activity relationship modeling</atitle><jtitle>Future medicinal chemistry</jtitle><addtitle>Future Med Chem</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>8</volume><issue>15</issue><spage>1825</spage><epage>1839</epage><pages>1825-1839</pages><issn>1756-8919</issn><eissn>1756-8927</eissn><abstract>We introduce AutoQSAR, an automated machine-learning application to build, validate and deploy quantitative structure-activity relationship (QSAR) models.
The process of descriptor generation, feature selection and the creation of a large number of QSAR models has been automated into a single workflow within AutoQSAR. The models are built using a variety of machine-learning methods, and each model is scored using a novel approach. Effectiveness of the method is demonstrated through comparison with literature QSAR models using identical datasets for six end points: protein-ligand binding affinity, solubility, blood-brain barrier permeability, carcinogenicity, mutagenicity and bioaccumulation in fish.
AutoQSAR demonstrates similar or better predictive performance as compared with published results for four of the six endpoints while requiring minimal human time and expertise.</abstract><cop>England</cop><pub>Future Science Ltd</pub><pmid>27643715</pmid><doi>10.4155/fmc-2016-0093</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1756-8919 |
ispartof | Future medicinal chemistry, 2016-10, Vol.8 (15), p.1825-1839 |
issn | 1756-8919 1756-8927 |
language | eng |
recordid | cdi_crossref_primary_10_4155_fmc_2016_0093 |
source | PMC |
subjects | binding affinity prediction blood-brain barrier permeability carcinogenicity fish bioconcentration factor mutagenicity QSAR solubility |
title | AutoQSAR: an automated machine learning tool for best-practice quantitative structure-activity relationship modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AutoQSAR:%20an%20automated%20machine%20learning%20tool%20for%20best-practice%20quantitative%20structure-activity%20relationship%20modeling&rft.jtitle=Future%20medicinal%20chemistry&rft.au=Dixon,%20Steven%20L&rft.date=2016-10-01&rft.volume=8&rft.issue=15&rft.spage=1825&rft.epage=1839&rft.pages=1825-1839&rft.issn=1756-8919&rft.eissn=1756-8927&rft_id=info:doi/10.4155/fmc-2016-0093&rft_dat=%3Cpubmed_cross%3E27643715%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-81b9e0eb026a36c991b447f842be18c49343e14b1db227f71cc9d13af4f289513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/27643715&rfr_iscdi=true |