Loading…

On the interaction of the Coxeter transformation and the rowmotion bijection

Let P be a finite poset and L the associated distributive lattice of order ideals of P . Let \rho denote the rowmotion bijection of the order ideals of P viewed as a permutation matrix and C the Coxeter matrix for the incidence algebra kL of L . Then, we show the identity (\rho^{-1}C)^{2}=\mathrm{id...

Full description

Saved in:
Bibliographic Details
Published in:Journal of combinatorial algebra 2024-09, Vol.8 (3), p.359-374
Main Authors: Marczinzik, René, Thomas, Hugh, Yıldırım, Emine
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 374
container_issue 3
container_start_page 359
container_title Journal of combinatorial algebra
container_volume 8
creator Marczinzik, René
Thomas, Hugh
Yıldırım, Emine
description Let P be a finite poset and L the associated distributive lattice of order ideals of P . Let \rho denote the rowmotion bijection of the order ideals of P viewed as a permutation matrix and C the Coxeter matrix for the incidence algebra kL of L . Then, we show the identity (\rho^{-1}C)^{2}=\mathrm{id} , as was originally conjectured by Sam Hopkins. Recently, it was noted that the rowmotion bijection is a special case of the much more general grade bijection R that exists for any Auslander regular algebra. This motivates to study the interaction of the grade bijection and the Coxeter matrix for general Auslander regular algebras. For the class of higher Auslander algebras coming from n -representation finite algebras, we show that (R^{-1}C)^{2}=\mathrm{id} if n is even and (R^{-1}C+\mathrm{id})^{2}=0 when n is odd.
doi_str_mv 10.4171/jca/101
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jca_101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_jca_101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c150t-57be33ceef1087fe3adcdf9a25b8ba439147a9119216122928a972d5d1ca54d93</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOIyDf6E7V3XuTZpps5TiCwqz0XW5zQNbbCJJQP331iqzOofvcC-Hw9g1wm2FNe4nTXsEPGMbXqEsDwLh_OSBX7JdShMA8AahAdiw7uiL_GaL0WcbSecx-CK4FbXhyy6wyJF8ciHOtKbkzRrH8DmHlQzjZNfLK3bh6D3Z3b9u2evD_Uv7VHbHx-f2ris1SsilrAcrhLbWLSVqZwUZbZwiLodmoEoorGpSiIrjATlXvCFVcyMNapKVUWLLbv7-6hhSitb1H3GcKX73CP3vDv2yw-JR_AC0C1CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the interaction of the Coxeter transformation and the rowmotion bijection</title><source>DOAJ Directory of Open Access Journals</source><creator>Marczinzik, René ; Thomas, Hugh ; Yıldırım, Emine</creator><creatorcontrib>Marczinzik, René ; Thomas, Hugh ; Yıldırım, Emine</creatorcontrib><description>Let P be a finite poset and L the associated distributive lattice of order ideals of P . Let \rho denote the rowmotion bijection of the order ideals of P viewed as a permutation matrix and C the Coxeter matrix for the incidence algebra kL of L . Then, we show the identity (\rho^{-1}C)^{2}=\mathrm{id} , as was originally conjectured by Sam Hopkins. Recently, it was noted that the rowmotion bijection is a special case of the much more general grade bijection R that exists for any Auslander regular algebra. This motivates to study the interaction of the grade bijection and the Coxeter matrix for general Auslander regular algebras. For the class of higher Auslander algebras coming from n -representation finite algebras, we show that (R^{-1}C)^{2}=\mathrm{id} if n is even and (R^{-1}C+\mathrm{id})^{2}=0 when n is odd.</description><identifier>ISSN: 2415-6302</identifier><identifier>EISSN: 2415-6310</identifier><identifier>DOI: 10.4171/jca/101</identifier><language>eng</language><ispartof>Journal of combinatorial algebra, 2024-09, Vol.8 (3), p.359-374</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9994-1078 ; 0000-0003-1177-9972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Marczinzik, René</creatorcontrib><creatorcontrib>Thomas, Hugh</creatorcontrib><creatorcontrib>Yıldırım, Emine</creatorcontrib><title>On the interaction of the Coxeter transformation and the rowmotion bijection</title><title>Journal of combinatorial algebra</title><description>Let P be a finite poset and L the associated distributive lattice of order ideals of P . Let \rho denote the rowmotion bijection of the order ideals of P viewed as a permutation matrix and C the Coxeter matrix for the incidence algebra kL of L . Then, we show the identity (\rho^{-1}C)^{2}=\mathrm{id} , as was originally conjectured by Sam Hopkins. Recently, it was noted that the rowmotion bijection is a special case of the much more general grade bijection R that exists for any Auslander regular algebra. This motivates to study the interaction of the grade bijection and the Coxeter matrix for general Auslander regular algebras. For the class of higher Auslander algebras coming from n -representation finite algebras, we show that (R^{-1}C)^{2}=\mathrm{id} if n is even and (R^{-1}C+\mathrm{id})^{2}=0 when n is odd.</description><issn>2415-6302</issn><issn>2415-6310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOIyDf6E7V3XuTZpps5TiCwqz0XW5zQNbbCJJQP331iqzOofvcC-Hw9g1wm2FNe4nTXsEPGMbXqEsDwLh_OSBX7JdShMA8AahAdiw7uiL_GaL0WcbSecx-CK4FbXhyy6wyJF8ciHOtKbkzRrH8DmHlQzjZNfLK3bh6D3Z3b9u2evD_Uv7VHbHx-f2ris1SsilrAcrhLbWLSVqZwUZbZwiLodmoEoorGpSiIrjATlXvCFVcyMNapKVUWLLbv7-6hhSitb1H3GcKX73CP3vDv2yw-JR_AC0C1CQ</recordid><startdate>20240919</startdate><enddate>20240919</enddate><creator>Marczinzik, René</creator><creator>Thomas, Hugh</creator><creator>Yıldırım, Emine</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9994-1078</orcidid><orcidid>https://orcid.org/0000-0003-1177-9972</orcidid></search><sort><creationdate>20240919</creationdate><title>On the interaction of the Coxeter transformation and the rowmotion bijection</title><author>Marczinzik, René ; Thomas, Hugh ; Yıldırım, Emine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c150t-57be33ceef1087fe3adcdf9a25b8ba439147a9119216122928a972d5d1ca54d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marczinzik, René</creatorcontrib><creatorcontrib>Thomas, Hugh</creatorcontrib><creatorcontrib>Yıldırım, Emine</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marczinzik, René</au><au>Thomas, Hugh</au><au>Yıldırım, Emine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the interaction of the Coxeter transformation and the rowmotion bijection</atitle><jtitle>Journal of combinatorial algebra</jtitle><date>2024-09-19</date><risdate>2024</risdate><volume>8</volume><issue>3</issue><spage>359</spage><epage>374</epage><pages>359-374</pages><issn>2415-6302</issn><eissn>2415-6310</eissn><abstract>Let P be a finite poset and L the associated distributive lattice of order ideals of P . Let \rho denote the rowmotion bijection of the order ideals of P viewed as a permutation matrix and C the Coxeter matrix for the incidence algebra kL of L . Then, we show the identity (\rho^{-1}C)^{2}=\mathrm{id} , as was originally conjectured by Sam Hopkins. Recently, it was noted that the rowmotion bijection is a special case of the much more general grade bijection R that exists for any Auslander regular algebra. This motivates to study the interaction of the grade bijection and the Coxeter matrix for general Auslander regular algebras. For the class of higher Auslander algebras coming from n -representation finite algebras, we show that (R^{-1}C)^{2}=\mathrm{id} if n is even and (R^{-1}C+\mathrm{id})^{2}=0 when n is odd.</abstract><doi>10.4171/jca/101</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9994-1078</orcidid><orcidid>https://orcid.org/0000-0003-1177-9972</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2415-6302
ispartof Journal of combinatorial algebra, 2024-09, Vol.8 (3), p.359-374
issn 2415-6302
2415-6310
language eng
recordid cdi_crossref_primary_10_4171_jca_101
source DOAJ Directory of Open Access Journals
title On the interaction of the Coxeter transformation and the rowmotion bijection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20interaction%20of%20the%20Coxeter%20transformation%20and%20the%20rowmotion%20bijection&rft.jtitle=Journal%20of%20combinatorial%20algebra&rft.au=Marczinzik,%20Ren%C3%A9&rft.date=2024-09-19&rft.volume=8&rft.issue=3&rft.spage=359&rft.epage=374&rft.pages=359-374&rft.issn=2415-6302&rft.eissn=2415-6310&rft_id=info:doi/10.4171/jca/101&rft_dat=%3Ccrossref%3E10_4171_jca_101%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c150t-57be33ceef1087fe3adcdf9a25b8ba439147a9119216122928a972d5d1ca54d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true