Loading…
On the interaction of the Coxeter transformation and the rowmotion bijection
Let P be a finite poset and L the associated distributive lattice of order ideals of P . Let \rho denote the rowmotion bijection of the order ideals of P viewed as a permutation matrix and C the Coxeter matrix for the incidence algebra kL of L . Then, we show the identity (\rho^{-1}C)^{2}=\mathrm{id...
Saved in:
Published in: | Journal of combinatorial algebra 2024-09, Vol.8 (3), p.359-374 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 374 |
container_issue | 3 |
container_start_page | 359 |
container_title | Journal of combinatorial algebra |
container_volume | 8 |
creator | Marczinzik, René Thomas, Hugh Yıldırım, Emine |
description | Let P be a finite poset and L the associated distributive lattice of order ideals of P . Let \rho denote the rowmotion bijection of the order ideals of P viewed as a permutation matrix and C the Coxeter matrix for the incidence algebra kL of L . Then, we show the identity (\rho^{-1}C)^{2}=\mathrm{id} , as was originally conjectured by Sam Hopkins. Recently, it was noted that the rowmotion bijection is a special case of the much more general grade bijection R that exists for any Auslander regular algebra. This motivates to study the interaction of the grade bijection and the Coxeter matrix for general Auslander regular algebras. For the class of higher Auslander algebras coming from n -representation finite algebras, we show that (R^{-1}C)^{2}=\mathrm{id} if n is even and (R^{-1}C+\mathrm{id})^{2}=0 when n is odd. |
doi_str_mv | 10.4171/jca/101 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jca_101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_jca_101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c150t-57be33ceef1087fe3adcdf9a25b8ba439147a9119216122928a972d5d1ca54d93</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOIyDf6E7V3XuTZpps5TiCwqz0XW5zQNbbCJJQP331iqzOofvcC-Hw9g1wm2FNe4nTXsEPGMbXqEsDwLh_OSBX7JdShMA8AahAdiw7uiL_GaL0WcbSecx-CK4FbXhyy6wyJF8ciHOtKbkzRrH8DmHlQzjZNfLK3bh6D3Z3b9u2evD_Uv7VHbHx-f2ris1SsilrAcrhLbWLSVqZwUZbZwiLodmoEoorGpSiIrjATlXvCFVcyMNapKVUWLLbv7-6hhSitb1H3GcKX73CP3vDv2yw-JR_AC0C1CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the interaction of the Coxeter transformation and the rowmotion bijection</title><source>DOAJ Directory of Open Access Journals</source><creator>Marczinzik, René ; Thomas, Hugh ; Yıldırım, Emine</creator><creatorcontrib>Marczinzik, René ; Thomas, Hugh ; Yıldırım, Emine</creatorcontrib><description>Let P be a finite poset and L the associated distributive lattice of order ideals of P . Let \rho denote the rowmotion bijection of the order ideals of P viewed as a permutation matrix and C the Coxeter matrix for the incidence algebra kL of L . Then, we show the identity (\rho^{-1}C)^{2}=\mathrm{id} , as was originally conjectured by Sam Hopkins. Recently, it was noted that the rowmotion bijection is a special case of the much more general grade bijection R that exists for any Auslander regular algebra. This motivates to study the interaction of the grade bijection and the Coxeter matrix for general Auslander regular algebras. For the class of higher Auslander algebras coming from n -representation finite algebras, we show that (R^{-1}C)^{2}=\mathrm{id} if n is even and (R^{-1}C+\mathrm{id})^{2}=0 when n is odd.</description><identifier>ISSN: 2415-6302</identifier><identifier>EISSN: 2415-6310</identifier><identifier>DOI: 10.4171/jca/101</identifier><language>eng</language><ispartof>Journal of combinatorial algebra, 2024-09, Vol.8 (3), p.359-374</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9994-1078 ; 0000-0003-1177-9972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Marczinzik, René</creatorcontrib><creatorcontrib>Thomas, Hugh</creatorcontrib><creatorcontrib>Yıldırım, Emine</creatorcontrib><title>On the interaction of the Coxeter transformation and the rowmotion bijection</title><title>Journal of combinatorial algebra</title><description>Let P be a finite poset and L the associated distributive lattice of order ideals of P . Let \rho denote the rowmotion bijection of the order ideals of P viewed as a permutation matrix and C the Coxeter matrix for the incidence algebra kL of L . Then, we show the identity (\rho^{-1}C)^{2}=\mathrm{id} , as was originally conjectured by Sam Hopkins. Recently, it was noted that the rowmotion bijection is a special case of the much more general grade bijection R that exists for any Auslander regular algebra. This motivates to study the interaction of the grade bijection and the Coxeter matrix for general Auslander regular algebras. For the class of higher Auslander algebras coming from n -representation finite algebras, we show that (R^{-1}C)^{2}=\mathrm{id} if n is even and (R^{-1}C+\mathrm{id})^{2}=0 when n is odd.</description><issn>2415-6302</issn><issn>2415-6310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOIyDf6E7V3XuTZpps5TiCwqz0XW5zQNbbCJJQP331iqzOofvcC-Hw9g1wm2FNe4nTXsEPGMbXqEsDwLh_OSBX7JdShMA8AahAdiw7uiL_GaL0WcbSecx-CK4FbXhyy6wyJF8ciHOtKbkzRrH8DmHlQzjZNfLK3bh6D3Z3b9u2evD_Uv7VHbHx-f2ris1SsilrAcrhLbWLSVqZwUZbZwiLodmoEoorGpSiIrjATlXvCFVcyMNapKVUWLLbv7-6hhSitb1H3GcKX73CP3vDv2yw-JR_AC0C1CQ</recordid><startdate>20240919</startdate><enddate>20240919</enddate><creator>Marczinzik, René</creator><creator>Thomas, Hugh</creator><creator>Yıldırım, Emine</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9994-1078</orcidid><orcidid>https://orcid.org/0000-0003-1177-9972</orcidid></search><sort><creationdate>20240919</creationdate><title>On the interaction of the Coxeter transformation and the rowmotion bijection</title><author>Marczinzik, René ; Thomas, Hugh ; Yıldırım, Emine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c150t-57be33ceef1087fe3adcdf9a25b8ba439147a9119216122928a972d5d1ca54d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marczinzik, René</creatorcontrib><creatorcontrib>Thomas, Hugh</creatorcontrib><creatorcontrib>Yıldırım, Emine</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marczinzik, René</au><au>Thomas, Hugh</au><au>Yıldırım, Emine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the interaction of the Coxeter transformation and the rowmotion bijection</atitle><jtitle>Journal of combinatorial algebra</jtitle><date>2024-09-19</date><risdate>2024</risdate><volume>8</volume><issue>3</issue><spage>359</spage><epage>374</epage><pages>359-374</pages><issn>2415-6302</issn><eissn>2415-6310</eissn><abstract>Let P be a finite poset and L the associated distributive lattice of order ideals of P . Let \rho denote the rowmotion bijection of the order ideals of P viewed as a permutation matrix and C the Coxeter matrix for the incidence algebra kL of L . Then, we show the identity (\rho^{-1}C)^{2}=\mathrm{id} , as was originally conjectured by Sam Hopkins. Recently, it was noted that the rowmotion bijection is a special case of the much more general grade bijection R that exists for any Auslander regular algebra. This motivates to study the interaction of the grade bijection and the Coxeter matrix for general Auslander regular algebras. For the class of higher Auslander algebras coming from n -representation finite algebras, we show that (R^{-1}C)^{2}=\mathrm{id} if n is even and (R^{-1}C+\mathrm{id})^{2}=0 when n is odd.</abstract><doi>10.4171/jca/101</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9994-1078</orcidid><orcidid>https://orcid.org/0000-0003-1177-9972</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2415-6302 |
ispartof | Journal of combinatorial algebra, 2024-09, Vol.8 (3), p.359-374 |
issn | 2415-6302 2415-6310 |
language | eng |
recordid | cdi_crossref_primary_10_4171_jca_101 |
source | DOAJ Directory of Open Access Journals |
title | On the interaction of the Coxeter transformation and the rowmotion bijection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20interaction%20of%20the%20Coxeter%20transformation%20and%20the%20rowmotion%20bijection&rft.jtitle=Journal%20of%20combinatorial%20algebra&rft.au=Marczinzik,%20Ren%C3%A9&rft.date=2024-09-19&rft.volume=8&rft.issue=3&rft.spage=359&rft.epage=374&rft.pages=359-374&rft.issn=2415-6302&rft.eissn=2415-6310&rft_id=info:doi/10.4171/jca/101&rft_dat=%3Ccrossref%3E10_4171_jca_101%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c150t-57be33ceef1087fe3adcdf9a25b8ba439147a9119216122928a972d5d1ca54d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |