Loading…
HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION
In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L2 norm and present the (2k+1)-th order negative-norm estimate of the semi- discrete LDG method for the Allen-Cahn equatio...
Saved in:
Published in: | Journal of computational mathematics 2016-03, Vol.34 (2), p.135-158 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c298t-ddf27abda87642624c32e36c368b1b90712f743715690fa7f613033cba7930713 |
---|---|
cites | |
container_end_page | 158 |
container_issue | 2 |
container_start_page | 135 |
container_title | Journal of computational mathematics |
container_volume | 34 |
creator | Guo, Ruihan Ji, Liangyue Xu, Yan |
description | In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L2 norm and present the (2k+1)-th order negative-norm estimate of the semi- discrete LDG method for the Allen-Cahn equation with smooth solution. To relax the severe time step restriction of explicit time marching methods, we construct a first order semi-implicit scheme based on the convex splitting principle of the discrete Allen-Cahn energy and prove the corresponding unconditional energy stability. To achieve high order temporal accuracy, we employ the semi-implicit spectral deferred correction (SDC) method. Combining with the unconditionally stable convex splitting scheme, the SDC method can be high order accurate and stable in our numerical tests. To enhance the efficiency of the proposed methods, the multigrid solver is adapted to solve the resulting nonlinear algebraic systems. Numerical studies are presented to confirm that we can achieve optimal accuracy of (O(hk+1) in L2 norm and improve the LDG solution from (O(hk+1) to (O(h2k+1) with the accuracy enhancement post-processing technique. |
doi_str_mv | 10.4208/jcm.1510-m2014-0002 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4208_jcm_1510_m2014_0002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>668266435</cqvip_id><jstor_id>45151384</jstor_id><sourcerecordid>45151384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-ddf27abda87642624c32e36c368b1b90712f743715690fa7f613033cba7930713</originalsourceid><addsrcrecordid>eNo9kMtOwkAUhidGExF9AmMycT84t850lk0pdOLQib0sXDVtoQgR0JaNr-Kz-E6-goMQVudP_stJPgDuCR5xiv2ndbMZEY9gtKGYcIQxphdgQJQiSBKmLsEAU48jxbG6Bjd9v3YJRrkcgDbW0xjadByl0NgwMHCss9AmuU4KW2RwGpgofdYJnEV5bMcZnNgU5nEEA2OiBIVBnMDopQhybZPfn28YJIF5zXTmxBhmelaYf-sWXLXVe7-4O90hKCZRHsbI2Kl2X1FDlb9H83lLZVXPK18KTgXlDaMLJhom_JrUCktCW8mZJJ5QuK1kKwjDjDV1JRVzLhsCdtxtul3fd4u2_OhWm6r7KgkuD6hKh6o8oCr_UZUHVK71cGyt-_2uO1e454LM585_PK2-7bbLz9V2ec4I4VMhOPPYH6u5ah8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Guo, Ruihan ; Ji, Liangyue ; Xu, Yan</creator><creatorcontrib>Guo, Ruihan ; Ji, Liangyue ; Xu, Yan</creatorcontrib><description>In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L2 norm and present the (2k+1)-th order negative-norm estimate of the semi- discrete LDG method for the Allen-Cahn equation with smooth solution. To relax the severe time step restriction of explicit time marching methods, we construct a first order semi-implicit scheme based on the convex splitting principle of the discrete Allen-Cahn energy and prove the corresponding unconditional energy stability. To achieve high order temporal accuracy, we employ the semi-implicit spectral deferred correction (SDC) method. Combining with the unconditionally stable convex splitting scheme, the SDC method can be high order accurate and stable in our numerical tests. To enhance the efficiency of the proposed methods, the multigrid solver is adapted to solve the resulting nonlinear algebraic systems. Numerical studies are presented to confirm that we can achieve optimal accuracy of (O(hk+1) in L2 norm and improve the LDG solution from (O(hk+1) to (O(h2k+1) with the accuracy enhancement post-processing technique.</description><identifier>ISSN: 0254-9409</identifier><identifier>EISSN: 1991-7139</identifier><identifier>DOI: 10.4208/jcm.1510-m2014-0002</identifier><language>eng</language><publisher>Chinese Academy of Mathematices and Systems Science (AMSS) Chinese Academy of Sciences</publisher><subject>allen-cahn方程 ; 仿真 ; 局部间断Galerkin方法 ; 时间推进方法 ; 时间精度 ; 最优收敛速度 ; 能量稳定性 ; 高阶</subject><ispartof>Journal of computational mathematics, 2016-03, Vol.34 (2), p.135-158</ispartof><rights>Copyright 2016 AMSS, Chinese Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-ddf27abda87642624c32e36c368b1b90712f743715690fa7f613033cba7930713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85761X/85761X.jpg</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45151384$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45151384$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Guo, Ruihan</creatorcontrib><creatorcontrib>Ji, Liangyue</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><title>HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION</title><title>Journal of computational mathematics</title><addtitle>Journal of Computational Mathematics</addtitle><description>In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L2 norm and present the (2k+1)-th order negative-norm estimate of the semi- discrete LDG method for the Allen-Cahn equation with smooth solution. To relax the severe time step restriction of explicit time marching methods, we construct a first order semi-implicit scheme based on the convex splitting principle of the discrete Allen-Cahn energy and prove the corresponding unconditional energy stability. To achieve high order temporal accuracy, we employ the semi-implicit spectral deferred correction (SDC) method. Combining with the unconditionally stable convex splitting scheme, the SDC method can be high order accurate and stable in our numerical tests. To enhance the efficiency of the proposed methods, the multigrid solver is adapted to solve the resulting nonlinear algebraic systems. Numerical studies are presented to confirm that we can achieve optimal accuracy of (O(hk+1) in L2 norm and improve the LDG solution from (O(hk+1) to (O(h2k+1) with the accuracy enhancement post-processing technique.</description><subject>allen-cahn方程</subject><subject>仿真</subject><subject>局部间断Galerkin方法</subject><subject>时间推进方法</subject><subject>时间精度</subject><subject>最优收敛速度</subject><subject>能量稳定性</subject><subject>高阶</subject><issn>0254-9409</issn><issn>1991-7139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwkAUhidGExF9AmMycT84t850lk0pdOLQib0sXDVtoQgR0JaNr-Kz-E6-goMQVudP_stJPgDuCR5xiv2ndbMZEY9gtKGYcIQxphdgQJQiSBKmLsEAU48jxbG6Bjd9v3YJRrkcgDbW0xjadByl0NgwMHCss9AmuU4KW2RwGpgofdYJnEV5bMcZnNgU5nEEA2OiBIVBnMDopQhybZPfn28YJIF5zXTmxBhmelaYf-sWXLXVe7-4O90hKCZRHsbI2Kl2X1FDlb9H83lLZVXPK18KTgXlDaMLJhom_JrUCktCW8mZJJ5QuK1kKwjDjDV1JRVzLhsCdtxtul3fd4u2_OhWm6r7KgkuD6hKh6o8oCr_UZUHVK71cGyt-_2uO1e454LM585_PK2-7bbLz9V2ec4I4VMhOPPYH6u5ah8</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Guo, Ruihan</creator><creator>Ji, Liangyue</creator><creator>Xu, Yan</creator><general>Chinese Academy of Mathematices and Systems Science (AMSS) Chinese Academy of Sciences</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160301</creationdate><title>HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION</title><author>Guo, Ruihan ; Ji, Liangyue ; Xu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-ddf27abda87642624c32e36c368b1b90712f743715690fa7f613033cba7930713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>allen-cahn方程</topic><topic>仿真</topic><topic>局部间断Galerkin方法</topic><topic>时间推进方法</topic><topic>时间精度</topic><topic>最优收敛速度</topic><topic>能量稳定性</topic><topic>高阶</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Ruihan</creatorcontrib><creatorcontrib>Ji, Liangyue</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Journal of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Ruihan</au><au>Ji, Liangyue</au><au>Xu, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION</atitle><jtitle>Journal of computational mathematics</jtitle><addtitle>Journal of Computational Mathematics</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>34</volume><issue>2</issue><spage>135</spage><epage>158</epage><pages>135-158</pages><issn>0254-9409</issn><eissn>1991-7139</eissn><abstract>In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L2 norm and present the (2k+1)-th order negative-norm estimate of the semi- discrete LDG method for the Allen-Cahn equation with smooth solution. To relax the severe time step restriction of explicit time marching methods, we construct a first order semi-implicit scheme based on the convex splitting principle of the discrete Allen-Cahn energy and prove the corresponding unconditional energy stability. To achieve high order temporal accuracy, we employ the semi-implicit spectral deferred correction (SDC) method. Combining with the unconditionally stable convex splitting scheme, the SDC method can be high order accurate and stable in our numerical tests. To enhance the efficiency of the proposed methods, the multigrid solver is adapted to solve the resulting nonlinear algebraic systems. Numerical studies are presented to confirm that we can achieve optimal accuracy of (O(hk+1) in L2 norm and improve the LDG solution from (O(hk+1) to (O(h2k+1) with the accuracy enhancement post-processing technique.</abstract><pub>Chinese Academy of Mathematices and Systems Science (AMSS) Chinese Academy of Sciences</pub><doi>10.4208/jcm.1510-m2014-0002</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-9409 |
ispartof | Journal of computational mathematics, 2016-03, Vol.34 (2), p.135-158 |
issn | 0254-9409 1991-7139 |
language | eng |
recordid | cdi_crossref_primary_10_4208_jcm_1510_m2014_0002 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | allen-cahn方程 仿真 局部间断Galerkin方法 时间推进方法 时间精度 最优收敛速度 能量稳定性 高阶 |
title | HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HIGH%20ORDER%20LOCAL%20DISCONTINUOUS%20GALERKIN%20METHODS%20FOR%20THE%20ALLEN-CAHN%20EQUATION%EF%BC%9A%20ANALYSIS%20AND%20SIMULATION&rft.jtitle=Journal%20of%20computational%20mathematics&rft.au=Guo,%20Ruihan&rft.date=2016-03-01&rft.volume=34&rft.issue=2&rft.spage=135&rft.epage=158&rft.pages=135-158&rft.issn=0254-9409&rft.eissn=1991-7139&rft_id=info:doi/10.4208/jcm.1510-m2014-0002&rft_dat=%3Cjstor_cross%3E45151384%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c298t-ddf27abda87642624c32e36c368b1b90712f743715690fa7f613033cba7930713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=668266435&rft_jstor_id=45151384&rfr_iscdi=true |