Loading…

HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION

In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L2 norm and present the (2k+1)-th order negative-norm estimate of the semi- discrete LDG method for the Allen-Cahn equatio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational mathematics 2016-03, Vol.34 (2), p.135-158
Main Authors: Guo, Ruihan, Ji, Liangyue, Xu, Yan
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c298t-ddf27abda87642624c32e36c368b1b90712f743715690fa7f613033cba7930713
cites
container_end_page 158
container_issue 2
container_start_page 135
container_title Journal of computational mathematics
container_volume 34
creator Guo, Ruihan
Ji, Liangyue
Xu, Yan
description In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L2 norm and present the (2k+1)-th order negative-norm estimate of the semi- discrete LDG method for the Allen-Cahn equation with smooth solution. To relax the severe time step restriction of explicit time marching methods, we construct a first order semi-implicit scheme based on the convex splitting principle of the discrete Allen-Cahn energy and prove the corresponding unconditional energy stability. To achieve high order temporal accuracy, we employ the semi-implicit spectral deferred correction (SDC) method. Combining with the unconditionally stable convex splitting scheme, the SDC method can be high order accurate and stable in our numerical tests. To enhance the efficiency of the proposed methods, the multigrid solver is adapted to solve the resulting nonlinear algebraic systems. Numerical studies are presented to confirm that we can achieve optimal accuracy of (O(hk+1) in L2 norm and improve the LDG solution from (O(hk+1) to (O(h2k+1) with the accuracy enhancement post-processing technique.
doi_str_mv 10.4208/jcm.1510-m2014-0002
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4208_jcm_1510_m2014_0002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>668266435</cqvip_id><jstor_id>45151384</jstor_id><sourcerecordid>45151384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-ddf27abda87642624c32e36c368b1b90712f743715690fa7f613033cba7930713</originalsourceid><addsrcrecordid>eNo9kMtOwkAUhidGExF9AmMycT84t850lk0pdOLQib0sXDVtoQgR0JaNr-Kz-E6-goMQVudP_stJPgDuCR5xiv2ndbMZEY9gtKGYcIQxphdgQJQiSBKmLsEAU48jxbG6Bjd9v3YJRrkcgDbW0xjadByl0NgwMHCss9AmuU4KW2RwGpgofdYJnEV5bMcZnNgU5nEEA2OiBIVBnMDopQhybZPfn28YJIF5zXTmxBhmelaYf-sWXLXVe7-4O90hKCZRHsbI2Kl2X1FDlb9H83lLZVXPK18KTgXlDaMLJhom_JrUCktCW8mZJJ5QuK1kKwjDjDV1JRVzLhsCdtxtul3fd4u2_OhWm6r7KgkuD6hKh6o8oCr_UZUHVK71cGyt-_2uO1e454LM585_PK2-7bbLz9V2ec4I4VMhOPPYH6u5ah8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Guo, Ruihan ; Ji, Liangyue ; Xu, Yan</creator><creatorcontrib>Guo, Ruihan ; Ji, Liangyue ; Xu, Yan</creatorcontrib><description>In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L2 norm and present the (2k+1)-th order negative-norm estimate of the semi- discrete LDG method for the Allen-Cahn equation with smooth solution. To relax the severe time step restriction of explicit time marching methods, we construct a first order semi-implicit scheme based on the convex splitting principle of the discrete Allen-Cahn energy and prove the corresponding unconditional energy stability. To achieve high order temporal accuracy, we employ the semi-implicit spectral deferred correction (SDC) method. Combining with the unconditionally stable convex splitting scheme, the SDC method can be high order accurate and stable in our numerical tests. To enhance the efficiency of the proposed methods, the multigrid solver is adapted to solve the resulting nonlinear algebraic systems. Numerical studies are presented to confirm that we can achieve optimal accuracy of (O(hk+1) in L2 norm and improve the LDG solution from (O(hk+1) to (O(h2k+1) with the accuracy enhancement post-processing technique.</description><identifier>ISSN: 0254-9409</identifier><identifier>EISSN: 1991-7139</identifier><identifier>DOI: 10.4208/jcm.1510-m2014-0002</identifier><language>eng</language><publisher>Chinese Academy of Mathematices and Systems Science (AMSS) Chinese Academy of Sciences</publisher><subject>allen-cahn方程 ; 仿真 ; 局部间断Galerkin方法 ; 时间推进方法 ; 时间精度 ; 最优收敛速度 ; 能量稳定性 ; 高阶</subject><ispartof>Journal of computational mathematics, 2016-03, Vol.34 (2), p.135-158</ispartof><rights>Copyright 2016 AMSS, Chinese Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-ddf27abda87642624c32e36c368b1b90712f743715690fa7f613033cba7930713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85761X/85761X.jpg</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45151384$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45151384$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Guo, Ruihan</creatorcontrib><creatorcontrib>Ji, Liangyue</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><title>HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION</title><title>Journal of computational mathematics</title><addtitle>Journal of Computational Mathematics</addtitle><description>In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L2 norm and present the (2k+1)-th order negative-norm estimate of the semi- discrete LDG method for the Allen-Cahn equation with smooth solution. To relax the severe time step restriction of explicit time marching methods, we construct a first order semi-implicit scheme based on the convex splitting principle of the discrete Allen-Cahn energy and prove the corresponding unconditional energy stability. To achieve high order temporal accuracy, we employ the semi-implicit spectral deferred correction (SDC) method. Combining with the unconditionally stable convex splitting scheme, the SDC method can be high order accurate and stable in our numerical tests. To enhance the efficiency of the proposed methods, the multigrid solver is adapted to solve the resulting nonlinear algebraic systems. Numerical studies are presented to confirm that we can achieve optimal accuracy of (O(hk+1) in L2 norm and improve the LDG solution from (O(hk+1) to (O(h2k+1) with the accuracy enhancement post-processing technique.</description><subject>allen-cahn方程</subject><subject>仿真</subject><subject>局部间断Galerkin方法</subject><subject>时间推进方法</subject><subject>时间精度</subject><subject>最优收敛速度</subject><subject>能量稳定性</subject><subject>高阶</subject><issn>0254-9409</issn><issn>1991-7139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwkAUhidGExF9AmMycT84t850lk0pdOLQib0sXDVtoQgR0JaNr-Kz-E6-goMQVudP_stJPgDuCR5xiv2ndbMZEY9gtKGYcIQxphdgQJQiSBKmLsEAU48jxbG6Bjd9v3YJRrkcgDbW0xjadByl0NgwMHCss9AmuU4KW2RwGpgofdYJnEV5bMcZnNgU5nEEA2OiBIVBnMDopQhybZPfn28YJIF5zXTmxBhmelaYf-sWXLXVe7-4O90hKCZRHsbI2Kl2X1FDlb9H83lLZVXPK18KTgXlDaMLJhom_JrUCktCW8mZJJ5QuK1kKwjDjDV1JRVzLhsCdtxtul3fd4u2_OhWm6r7KgkuD6hKh6o8oCr_UZUHVK71cGyt-_2uO1e454LM585_PK2-7bbLz9V2ec4I4VMhOPPYH6u5ah8</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Guo, Ruihan</creator><creator>Ji, Liangyue</creator><creator>Xu, Yan</creator><general>Chinese Academy of Mathematices and Systems Science (AMSS) Chinese Academy of Sciences</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160301</creationdate><title>HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION</title><author>Guo, Ruihan ; Ji, Liangyue ; Xu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-ddf27abda87642624c32e36c368b1b90712f743715690fa7f613033cba7930713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>allen-cahn方程</topic><topic>仿真</topic><topic>局部间断Galerkin方法</topic><topic>时间推进方法</topic><topic>时间精度</topic><topic>最优收敛速度</topic><topic>能量稳定性</topic><topic>高阶</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Ruihan</creatorcontrib><creatorcontrib>Ji, Liangyue</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Journal of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Ruihan</au><au>Ji, Liangyue</au><au>Xu, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION</atitle><jtitle>Journal of computational mathematics</jtitle><addtitle>Journal of Computational Mathematics</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>34</volume><issue>2</issue><spage>135</spage><epage>158</epage><pages>135-158</pages><issn>0254-9409</issn><eissn>1991-7139</eissn><abstract>In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L2 norm and present the (2k+1)-th order negative-norm estimate of the semi- discrete LDG method for the Allen-Cahn equation with smooth solution. To relax the severe time step restriction of explicit time marching methods, we construct a first order semi-implicit scheme based on the convex splitting principle of the discrete Allen-Cahn energy and prove the corresponding unconditional energy stability. To achieve high order temporal accuracy, we employ the semi-implicit spectral deferred correction (SDC) method. Combining with the unconditionally stable convex splitting scheme, the SDC method can be high order accurate and stable in our numerical tests. To enhance the efficiency of the proposed methods, the multigrid solver is adapted to solve the resulting nonlinear algebraic systems. Numerical studies are presented to confirm that we can achieve optimal accuracy of (O(hk+1) in L2 norm and improve the LDG solution from (O(hk+1) to (O(h2k+1) with the accuracy enhancement post-processing technique.</abstract><pub>Chinese Academy of Mathematices and Systems Science (AMSS) Chinese Academy of Sciences</pub><doi>10.4208/jcm.1510-m2014-0002</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-9409
ispartof Journal of computational mathematics, 2016-03, Vol.34 (2), p.135-158
issn 0254-9409
1991-7139
language eng
recordid cdi_crossref_primary_10_4208_jcm_1510_m2014_0002
source JSTOR Archival Journals and Primary Sources Collection
subjects allen-cahn方程
仿真
局部间断Galerkin方法
时间推进方法
时间精度
最优收敛速度
能量稳定性
高阶
title HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HIGH%20ORDER%20LOCAL%20DISCONTINUOUS%20GALERKIN%20METHODS%20FOR%20THE%20ALLEN-CAHN%20EQUATION%EF%BC%9A%20ANALYSIS%20AND%20SIMULATION&rft.jtitle=Journal%20of%20computational%20mathematics&rft.au=Guo,%20Ruihan&rft.date=2016-03-01&rft.volume=34&rft.issue=2&rft.spage=135&rft.epage=158&rft.pages=135-158&rft.issn=0254-9409&rft.eissn=1991-7139&rft_id=info:doi/10.4208/jcm.1510-m2014-0002&rft_dat=%3Cjstor_cross%3E45151384%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c298t-ddf27abda87642624c32e36c368b1b90712f743715690fa7f613033cba7930713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=668266435&rft_jstor_id=45151384&rfr_iscdi=true