Loading…

An Overview of PCDD/F Inventories and Emission Factors from Stationary and Mobile Sources: What We Know and What is Missing

This overview attempts to outline what we currently know about the PCDD/F emission inventories and the source categories therein. Besides the best available control techniques, suggestions are offered on how to reduce the PCDD/F emission factors and emission quantity of some important PCDD/F emissio...

Full description

Saved in:
Bibliographic Details
Published in:Aerosol and Air Quality Research 2016-12, Vol.16 (12), p.2965-2988
Main Authors: Cheruiyot, Nicholas Kiprotich, Lee, Wen-Jhy, Yan, Ping, Mwangi, John Kennedy, Wang, Lin-Chi, Gao, Xiang, Lin, Neng-Huei, Chang-Chien, Guo-Ping
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This overview attempts to outline what we currently know about the PCDD/F emission inventories and the source categories therein. Besides the best available control techniques, suggestions are offered on how to reduce the PCDD/F emission factors and emission quantity of some important PCDD/F emission sources. The PCDD/F combustion sources can be classified as either stationary or mobile or minimally/uncontrolled combustion sources. The major stationary sources of PCDD/Fs are metal production processes, waste incineration, heat and power plants, and fly ash treatment plant. Crematories, vehicles, residential boilers and stoves are of key concern due to their proximity to residential areas and their relatively lower lying stacks and exhaust gases, which may result in great impact to their surrounding environment. Moreover, we offered our perspectives on how to improve the quality and representative of the PCDD/F emission factors to attain PCDD/F inventories which correspond more to reality. These points of view include: (1) PCDD/F contributions during start-up procedures of MSWIs should be considered, (2) the sampling times of stack flue gases for EAFs and secondary metal smelters should correspond to whole smelting process stages, (3) longer flue gas sampling time should be executed for power plants, (4) direct exhaust samplings from tailpipes for mobile sources, (5) development of an open burn testing facility that can reflect the real open burning conditions, and (6) long-term sampling techniques like AMESA are suggested to used exclusively for the most contributed PCDD/F stationary sources.
ISSN:1680-8584
2071-1409
DOI:10.4209/aaqr.2016.10.0447