Loading…

Influence of Different Foreign Emissions Inventories on Simulated, Ground-Level Ozone in the Seoul Metropolitan Area during May 2014

This study examines the effects of different foreign anthropogenic emissions inventories on predicted ozone concentrations in the Seoul Metropolitan Area (SMA), South Korea, and estimates changes in ozone due to emissions reductions. We ran the Community Multi-Scale Air Quality (CMAQ) model using th...

Full description

Saved in:
Bibliographic Details
Published in:Aerosol and Air Quality Research 2017-12, Vol.17 (12), p.3179-3193+ap1-4
Main Authors: Kim, Byeong-Uk, You, Seunghee, Kim, Hyun Cheol, Lim, Yongjae, Suh, Insuk, Lee, Jae-Bum, Woo, Jung-Hun, Kim, Soontae
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study examines the effects of different foreign anthropogenic emissions inventories on predicted ozone concentrations in the Seoul Metropolitan Area (SMA), South Korea, and estimates changes in ozone due to emissions reductions. We ran the Community Multi-Scale Air Quality (CMAQ) model using the High-Order Decoupled Direct Method with three inventories of foreign anthropogenic emissions: (1) the Intercontinental Chemical Transport Experiment, Phase B (INTEX-B) 2006; (2) the Comprehensive Regional Emissions inventory for Atmospheric Transport Experiment (CREATE) 2010; and (3) the Model Inter-Comparison Study (MICS)-Asia 2010. All three inventories have different spatial distributions of emissions, yielding different modeled ozone concentrations. However, the ozone concentrations modeled for the SMA differ less than those modeled for large, foreign cities in the modeling domain. The simulations using INTEX-B 2006 and CREATE 2010 suggested greater reduction in ozone with NO_x control than with VOCs control. All simulations show that (1) simultaneous reduction in NO_x and VOCs leads to less ozone reduction than the sum of ozone reductions for individual NO_x and VOCs controls and (2) ozone reductions are stronger for high ozone days than for low ozone days. Comparing the modeled reductions in the relative sense yields smaller differences between high and low ozone days than comparing the modeled reductions in the absolute sense. With a 20% reduction in only NO_x emissions, the differences in MDA1O3 among the three inventories were between 0.3 and 0.7 ppb. Because air-quality planning often leads to defined tonnage reductions, we examined the model's response to such a defined emissions reduction. Using the NO_x reduction in China estimated by Zhao et al. (2013), we estimated that the differences in MDA1O3 among the three inventories were between 1.50 and 1.78 ppb. Based on these results, we recommend using different foreign anthropogenic emissions inventories to test future scenarios for air-quality control.
ISSN:1680-8584
2071-1409
DOI:10.4209/aaqr.2017.05.0165