Loading…

Midy's Theorem in non-integer bases and divisibility of Fibonacci numbers

Fractions $\frac{p}{q} \in [0,1)$ with prime denominator $q$ written in decimal have a curious property described by Midy's Theorem, namely that two halves of their period (if it is of even length $2n$) sum up to $10^n-1$. A number of results generalise Midy's theorem to expansions of $\fr...

Full description

Saved in:
Bibliographic Details
Published in:Communications in Mathematics 2024-05, Vol.33 (2025), Issue 2...
Main Authors: Masáková, Zuzana, Pelantová, Edita
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title Communications in Mathematics
container_volume 33 (2025), Issue 2...
creator Masáková, Zuzana
Pelantová, Edita
description Fractions $\frac{p}{q} \in [0,1)$ with prime denominator $q$ written in decimal have a curious property described by Midy's Theorem, namely that two halves of their period (if it is of even length $2n$) sum up to $10^n-1$. A number of results generalise Midy's theorem to expansions of $\frac{p}{q}$ in different integer bases, considering non-prime denominators, or dividing the period into more than two parts. We show that a similar phenomena can be studied even in the context of numeration systems with non-integer bases, as introduced by R\'enyi. First we define the Midy property for a general real base $\beta >1$ and derive a necessary condition for validity of the Midy property. For $\beta =\frac12(1+\sqrt5)$ we characterize prime denominators $q$, which satisfy the property.
doi_str_mv 10.46298/cm.12840
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_46298_cm_12840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_46298_cm_12840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c690-27d67f5890a8367f0f0597a56fb8d0d0ed7bc768922780e00c420dfc5c755e583</originalsourceid><addsrcrecordid>eNpNkL1KA0EYRQdRMMQUvsF0YrHxm9mdv1KCMYGIzfbL_Oon2VmZiULe3hAtrO7hFqc4hNwyWHaSG_3gxyXjuoMLMuNtKxt2Oi__8TVZ1PoBAMxw6Fg3I9sXDMe7Svv3OJU4Usw0T7nBfIhvsVBna6zU5kADfmNFh3s8HOmU6BrdlK33SPPX6GKpN-Qq2X2Ni7-dk3791K82ze71ebt63DVeGmi4ClIloQ1Y3Z4IEgijrJDJ6QABYlDOK6kN50pDBPAdh5C88EqIKHQ7J_e_Wl-mWktMw2fB0ZbjwGA4Vxj8OJwrtD-Gv06J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Midy's Theorem in non-integer bases and divisibility of Fibonacci numbers</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><creator>Masáková, Zuzana ; Pelantová, Edita</creator><creatorcontrib>Masáková, Zuzana ; Pelantová, Edita</creatorcontrib><description>Fractions $\frac{p}{q} \in [0,1)$ with prime denominator $q$ written in decimal have a curious property described by Midy's Theorem, namely that two halves of their period (if it is of even length $2n$) sum up to $10^n-1$. A number of results generalise Midy's theorem to expansions of $\frac{p}{q}$ in different integer bases, considering non-prime denominators, or dividing the period into more than two parts. We show that a similar phenomena can be studied even in the context of numeration systems with non-integer bases, as introduced by R\'enyi. First we define the Midy property for a general real base $\beta &gt;1$ and derive a necessary condition for validity of the Midy property. For $\beta =\frac12(1+\sqrt5)$ we characterize prime denominators $q$, which satisfy the property.</description><identifier>ISSN: 2336-1298</identifier><identifier>EISSN: 2336-1298</identifier><identifier>DOI: 10.46298/cm.12840</identifier><language>eng</language><ispartof>Communications in Mathematics, 2024-05, Vol.33 (2025), Issue 2...</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Masáková, Zuzana</creatorcontrib><creatorcontrib>Pelantová, Edita</creatorcontrib><title>Midy's Theorem in non-integer bases and divisibility of Fibonacci numbers</title><title>Communications in Mathematics</title><description>Fractions $\frac{p}{q} \in [0,1)$ with prime denominator $q$ written in decimal have a curious property described by Midy's Theorem, namely that two halves of their period (if it is of even length $2n$) sum up to $10^n-1$. A number of results generalise Midy's theorem to expansions of $\frac{p}{q}$ in different integer bases, considering non-prime denominators, or dividing the period into more than two parts. We show that a similar phenomena can be studied even in the context of numeration systems with non-integer bases, as introduced by R\'enyi. First we define the Midy property for a general real base $\beta &gt;1$ and derive a necessary condition for validity of the Midy property. For $\beta =\frac12(1+\sqrt5)$ we characterize prime denominators $q$, which satisfy the property.</description><issn>2336-1298</issn><issn>2336-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkL1KA0EYRQdRMMQUvsF0YrHxm9mdv1KCMYGIzfbL_Oon2VmZiULe3hAtrO7hFqc4hNwyWHaSG_3gxyXjuoMLMuNtKxt2Oi__8TVZ1PoBAMxw6Fg3I9sXDMe7Svv3OJU4Usw0T7nBfIhvsVBna6zU5kADfmNFh3s8HOmU6BrdlK33SPPX6GKpN-Qq2X2Ni7-dk3791K82ze71ebt63DVeGmi4ClIloQ1Y3Z4IEgijrJDJ6QABYlDOK6kN50pDBPAdh5C88EqIKHQ7J_e_Wl-mWktMw2fB0ZbjwGA4Vxj8OJwrtD-Gv06J</recordid><startdate>20240531</startdate><enddate>20240531</enddate><creator>Masáková, Zuzana</creator><creator>Pelantová, Edita</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240531</creationdate><title>Midy's Theorem in non-integer bases and divisibility of Fibonacci numbers</title><author>Masáková, Zuzana ; Pelantová, Edita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c690-27d67f5890a8367f0f0597a56fb8d0d0ed7bc768922780e00c420dfc5c755e583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masáková, Zuzana</creatorcontrib><creatorcontrib>Pelantová, Edita</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masáková, Zuzana</au><au>Pelantová, Edita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Midy's Theorem in non-integer bases and divisibility of Fibonacci numbers</atitle><jtitle>Communications in Mathematics</jtitle><date>2024-05-31</date><risdate>2024</risdate><volume>33 (2025), Issue 2...</volume><issn>2336-1298</issn><eissn>2336-1298</eissn><abstract>Fractions $\frac{p}{q} \in [0,1)$ with prime denominator $q$ written in decimal have a curious property described by Midy's Theorem, namely that two halves of their period (if it is of even length $2n$) sum up to $10^n-1$. A number of results generalise Midy's theorem to expansions of $\frac{p}{q}$ in different integer bases, considering non-prime denominators, or dividing the period into more than two parts. We show that a similar phenomena can be studied even in the context of numeration systems with non-integer bases, as introduced by R\'enyi. First we define the Midy property for a general real base $\beta &gt;1$ and derive a necessary condition for validity of the Midy property. For $\beta =\frac12(1+\sqrt5)$ we characterize prime denominators $q$, which satisfy the property.</abstract><doi>10.46298/cm.12840</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2336-1298
ispartof Communications in Mathematics, 2024-05, Vol.33 (2025), Issue 2...
issn 2336-1298
2336-1298
language eng
recordid cdi_crossref_primary_10_46298_cm_12840
source Freely Accessible Science Journals - check A-Z of ejournals
title Midy's Theorem in non-integer bases and divisibility of Fibonacci numbers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Midy's%20Theorem%20in%20non-integer%20bases%20and%20divisibility%20of%20Fibonacci%20numbers&rft.jtitle=Communications%20in%20Mathematics&rft.au=Mas%C3%A1kov%C3%A1,%20Zuzana&rft.date=2024-05-31&rft.volume=33%20(2025),%20Issue%202...&rft.issn=2336-1298&rft.eissn=2336-1298&rft_id=info:doi/10.46298/cm.12840&rft_dat=%3Ccrossref%3E10_46298_cm_12840%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c690-27d67f5890a8367f0f0597a56fb8d0d0ed7bc768922780e00c420dfc5c755e583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true