Loading…

Iterative Continuous Collocation Method for Solving Nonlinear Volterra Integral Equations

This paper is concerned with the numerical solution of nonlinear Volterra integral equations. The main purpose of this work is to provide a new numerical approach based on the use of continuous collocation Lagrange polynomials for the numerical solution of nonlinear Volterra integral equations. It i...

Full description

Saved in:
Bibliographic Details
Published in:Kragujevac Journal of Mathematics 2022-01, Vol.46 (4), p.635-648
Main Authors: ROUIBAH, K., BELLOUR, A., LIMA, P., RAWASHDEH, E.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c285t-53e019e28c5cb6204c91ef916f93b7dee64915969ee836ec38b03fccce8d61d63
cites
container_end_page 648
container_issue 4
container_start_page 635
container_title Kragujevac Journal of Mathematics
container_volume 46
creator ROUIBAH, K.
BELLOUR, A.
LIMA, P.
RAWASHDEH, E.
description This paper is concerned with the numerical solution of nonlinear Volterra integral equations. The main purpose of this work is to provide a new numerical approach based on the use of continuous collocation Lagrange polynomials for the numerical solution of nonlinear Volterra integral equations. It is shown that this method is convergent. The results are compared with the results obtained by other well-known numerical methods to prove the effectiveness of the presented algorithm.
doi_str_mv 10.46793/KgJMat2204.635R
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_46793_KgJMat2204_635R</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_46793_KgJMat2204_635R</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-53e019e28c5cb6204c91ef916f93b7dee64915969ee836ec38b03fccce8d61d63</originalsourceid><addsrcrecordid>eNpFkE1LAzEYhIMoWGrvHvMHtua7yVFK1Wqr4Bd4WtLsu3UlJppkC_571yp4mmFgBuZB6JSSqVAzw89uttdrWxgjYqq4vD9AIyaIqjgR8hCNqJCkMorpYzTJ-Y0QwrShXMxG6GVZINnS7QDPYyhd6GOfB-t9dEMcA15DeY0NbmPCD9HvurDFtzH4LoBN-Dn6oZ8sXoYC22Q9Xnz2-14-QUet9RkmfzpGTxeLx_lVtbq7XM7PV5VjWpZKciDUANNOuo0aDjhDoTVUtYZvZg2AEoZKowyA5goc1xvCW-cc6EbRRvExIr-7LsWcE7T1R-rebfqqKan3dOp_OvUPHf4N26Ba2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Iterative Continuous Collocation Method for Solving Nonlinear Volterra Integral Equations</title><source>DOAJ Directory of Open Access Journals</source><creator>ROUIBAH, K. ; BELLOUR, A. ; LIMA, P. ; RAWASHDEH, E.</creator><creatorcontrib>ROUIBAH, K. ; BELLOUR, A. ; LIMA, P. ; RAWASHDEH, E. ; Ecole Normale Supérieure de Constantine Constantine-Algeria ; University Center Abdelhafid Boussouf Mila, Algeria ; Instituto Superior Técnico, University of Lisbon, portugal ; Yarmouk University Irbid-Jordan</creatorcontrib><description>This paper is concerned with the numerical solution of nonlinear Volterra integral equations. The main purpose of this work is to provide a new numerical approach based on the use of continuous collocation Lagrange polynomials for the numerical solution of nonlinear Volterra integral equations. It is shown that this method is convergent. The results are compared with the results obtained by other well-known numerical methods to prove the effectiveness of the presented algorithm.</description><identifier>ISSN: 1450-9628</identifier><identifier>EISSN: 2406-3045</identifier><identifier>DOI: 10.46793/KgJMat2204.635R</identifier><language>eng</language><ispartof>Kragujevac Journal of Mathematics, 2022-01, Vol.46 (4), p.635-648</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-53e019e28c5cb6204c91ef916f93b7dee64915969ee836ec38b03fccce8d61d63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>ROUIBAH, K.</creatorcontrib><creatorcontrib>BELLOUR, A.</creatorcontrib><creatorcontrib>LIMA, P.</creatorcontrib><creatorcontrib>RAWASHDEH, E.</creatorcontrib><creatorcontrib>Ecole Normale Supérieure de Constantine Constantine-Algeria</creatorcontrib><creatorcontrib>University Center Abdelhafid Boussouf Mila, Algeria</creatorcontrib><creatorcontrib>Instituto Superior Técnico, University of Lisbon, portugal</creatorcontrib><creatorcontrib>Yarmouk University Irbid-Jordan</creatorcontrib><title>Iterative Continuous Collocation Method for Solving Nonlinear Volterra Integral Equations</title><title>Kragujevac Journal of Mathematics</title><description>This paper is concerned with the numerical solution of nonlinear Volterra integral equations. The main purpose of this work is to provide a new numerical approach based on the use of continuous collocation Lagrange polynomials for the numerical solution of nonlinear Volterra integral equations. It is shown that this method is convergent. The results are compared with the results obtained by other well-known numerical methods to prove the effectiveness of the presented algorithm.</description><issn>1450-9628</issn><issn>2406-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEYhIMoWGrvHvMHtua7yVFK1Wqr4Bd4WtLsu3UlJppkC_571yp4mmFgBuZB6JSSqVAzw89uttdrWxgjYqq4vD9AIyaIqjgR8hCNqJCkMorpYzTJ-Y0QwrShXMxG6GVZINnS7QDPYyhd6GOfB-t9dEMcA15DeY0NbmPCD9HvurDFtzH4LoBN-Dn6oZ8sXoYC22Q9Xnz2-14-QUet9RkmfzpGTxeLx_lVtbq7XM7PV5VjWpZKciDUANNOuo0aDjhDoTVUtYZvZg2AEoZKowyA5goc1xvCW-cc6EbRRvExIr-7LsWcE7T1R-rebfqqKan3dOp_OvUPHf4N26Ba2Q</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>ROUIBAH, K.</creator><creator>BELLOUR, A.</creator><creator>LIMA, P.</creator><creator>RAWASHDEH, E.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220101</creationdate><title>Iterative Continuous Collocation Method for Solving Nonlinear Volterra Integral Equations</title><author>ROUIBAH, K. ; BELLOUR, A. ; LIMA, P. ; RAWASHDEH, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-53e019e28c5cb6204c91ef916f93b7dee64915969ee836ec38b03fccce8d61d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROUIBAH, K.</creatorcontrib><creatorcontrib>BELLOUR, A.</creatorcontrib><creatorcontrib>LIMA, P.</creatorcontrib><creatorcontrib>RAWASHDEH, E.</creatorcontrib><creatorcontrib>Ecole Normale Supérieure de Constantine Constantine-Algeria</creatorcontrib><creatorcontrib>University Center Abdelhafid Boussouf Mila, Algeria</creatorcontrib><creatorcontrib>Instituto Superior Técnico, University of Lisbon, portugal</creatorcontrib><creatorcontrib>Yarmouk University Irbid-Jordan</creatorcontrib><collection>CrossRef</collection><jtitle>Kragujevac Journal of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROUIBAH, K.</au><au>BELLOUR, A.</au><au>LIMA, P.</au><au>RAWASHDEH, E.</au><aucorp>Ecole Normale Supérieure de Constantine Constantine-Algeria</aucorp><aucorp>University Center Abdelhafid Boussouf Mila, Algeria</aucorp><aucorp>Instituto Superior Técnico, University of Lisbon, portugal</aucorp><aucorp>Yarmouk University Irbid-Jordan</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative Continuous Collocation Method for Solving Nonlinear Volterra Integral Equations</atitle><jtitle>Kragujevac Journal of Mathematics</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>46</volume><issue>4</issue><spage>635</spage><epage>648</epage><pages>635-648</pages><issn>1450-9628</issn><eissn>2406-3045</eissn><abstract>This paper is concerned with the numerical solution of nonlinear Volterra integral equations. The main purpose of this work is to provide a new numerical approach based on the use of continuous collocation Lagrange polynomials for the numerical solution of nonlinear Volterra integral equations. It is shown that this method is convergent. The results are compared with the results obtained by other well-known numerical methods to prove the effectiveness of the presented algorithm.</abstract><doi>10.46793/KgJMat2204.635R</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1450-9628
ispartof Kragujevac Journal of Mathematics, 2022-01, Vol.46 (4), p.635-648
issn 1450-9628
2406-3045
language eng
recordid cdi_crossref_primary_10_46793_KgJMat2204_635R
source DOAJ Directory of Open Access Journals
title Iterative Continuous Collocation Method for Solving Nonlinear Volterra Integral Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20Continuous%20Collocation%20Method%20for%20Solving%20Nonlinear%20Volterra%20Integral%20Equations&rft.jtitle=Kragujevac%20Journal%20of%20Mathematics&rft.au=ROUIBAH,%20K.&rft.aucorp=Ecole%20Normale%20Sup%C3%A9rieure%20de%20Constantine%20Constantine-Algeria&rft.date=2022-01-01&rft.volume=46&rft.issue=4&rft.spage=635&rft.epage=648&rft.pages=635-648&rft.issn=1450-9628&rft.eissn=2406-3045&rft_id=info:doi/10.46793/KgJMat2204.635R&rft_dat=%3Ccrossref%3E10_46793_KgJMat2204_635R%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-53e019e28c5cb6204c91ef916f93b7dee64915969ee836ec38b03fccce8d61d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true