Loading…
Iterative Continuous Collocation Method for Solving Nonlinear Volterra Integral Equations
This paper is concerned with the numerical solution of nonlinear Volterra integral equations. The main purpose of this work is to provide a new numerical approach based on the use of continuous collocation Lagrange polynomials for the numerical solution of nonlinear Volterra integral equations. It i...
Saved in:
Published in: | Kragujevac Journal of Mathematics 2022-01, Vol.46 (4), p.635-648 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c285t-53e019e28c5cb6204c91ef916f93b7dee64915969ee836ec38b03fccce8d61d63 |
---|---|
cites | |
container_end_page | 648 |
container_issue | 4 |
container_start_page | 635 |
container_title | Kragujevac Journal of Mathematics |
container_volume | 46 |
creator | ROUIBAH, K. BELLOUR, A. LIMA, P. RAWASHDEH, E. |
description | This paper is concerned with the numerical solution of nonlinear Volterra integral equations. The main purpose of this work is to provide a new numerical approach based on the use of continuous collocation Lagrange polynomials for the numerical solution of nonlinear Volterra integral equations. It is shown that this method is convergent. The results are compared with the results obtained by other well-known numerical methods to prove the effectiveness of the presented algorithm. |
doi_str_mv | 10.46793/KgJMat2204.635R |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_46793_KgJMat2204_635R</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_46793_KgJMat2204_635R</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-53e019e28c5cb6204c91ef916f93b7dee64915969ee836ec38b03fccce8d61d63</originalsourceid><addsrcrecordid>eNpFkE1LAzEYhIMoWGrvHvMHtua7yVFK1Wqr4Bd4WtLsu3UlJppkC_571yp4mmFgBuZB6JSSqVAzw89uttdrWxgjYqq4vD9AIyaIqjgR8hCNqJCkMorpYzTJ-Y0QwrShXMxG6GVZINnS7QDPYyhd6GOfB-t9dEMcA15DeY0NbmPCD9HvurDFtzH4LoBN-Dn6oZ8sXoYC22Q9Xnz2-14-QUet9RkmfzpGTxeLx_lVtbq7XM7PV5VjWpZKciDUANNOuo0aDjhDoTVUtYZvZg2AEoZKowyA5goc1xvCW-cc6EbRRvExIr-7LsWcE7T1R-rebfqqKan3dOp_OvUPHf4N26Ba2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Iterative Continuous Collocation Method for Solving Nonlinear Volterra Integral Equations</title><source>DOAJ Directory of Open Access Journals</source><creator>ROUIBAH, K. ; BELLOUR, A. ; LIMA, P. ; RAWASHDEH, E.</creator><creatorcontrib>ROUIBAH, K. ; BELLOUR, A. ; LIMA, P. ; RAWASHDEH, E. ; Ecole Normale Supérieure de Constantine Constantine-Algeria ; University Center Abdelhafid Boussouf Mila, Algeria ; Instituto Superior Técnico, University of Lisbon, portugal ; Yarmouk University Irbid-Jordan</creatorcontrib><description>This paper is concerned with the numerical solution of nonlinear Volterra integral equations. The main purpose of this work is to provide a new numerical approach based on the use of continuous collocation Lagrange polynomials for the numerical solution of nonlinear Volterra integral equations. It is shown that this method is convergent. The results are compared with the results obtained by other well-known numerical methods to prove the effectiveness of the presented algorithm.</description><identifier>ISSN: 1450-9628</identifier><identifier>EISSN: 2406-3045</identifier><identifier>DOI: 10.46793/KgJMat2204.635R</identifier><language>eng</language><ispartof>Kragujevac Journal of Mathematics, 2022-01, Vol.46 (4), p.635-648</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-53e019e28c5cb6204c91ef916f93b7dee64915969ee836ec38b03fccce8d61d63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>ROUIBAH, K.</creatorcontrib><creatorcontrib>BELLOUR, A.</creatorcontrib><creatorcontrib>LIMA, P.</creatorcontrib><creatorcontrib>RAWASHDEH, E.</creatorcontrib><creatorcontrib>Ecole Normale Supérieure de Constantine Constantine-Algeria</creatorcontrib><creatorcontrib>University Center Abdelhafid Boussouf Mila, Algeria</creatorcontrib><creatorcontrib>Instituto Superior Técnico, University of Lisbon, portugal</creatorcontrib><creatorcontrib>Yarmouk University Irbid-Jordan</creatorcontrib><title>Iterative Continuous Collocation Method for Solving Nonlinear Volterra Integral Equations</title><title>Kragujevac Journal of Mathematics</title><description>This paper is concerned with the numerical solution of nonlinear Volterra integral equations. The main purpose of this work is to provide a new numerical approach based on the use of continuous collocation Lagrange polynomials for the numerical solution of nonlinear Volterra integral equations. It is shown that this method is convergent. The results are compared with the results obtained by other well-known numerical methods to prove the effectiveness of the presented algorithm.</description><issn>1450-9628</issn><issn>2406-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEYhIMoWGrvHvMHtua7yVFK1Wqr4Bd4WtLsu3UlJppkC_571yp4mmFgBuZB6JSSqVAzw89uttdrWxgjYqq4vD9AIyaIqjgR8hCNqJCkMorpYzTJ-Y0QwrShXMxG6GVZINnS7QDPYyhd6GOfB-t9dEMcA15DeY0NbmPCD9HvurDFtzH4LoBN-Dn6oZ8sXoYC22Q9Xnz2-14-QUet9RkmfzpGTxeLx_lVtbq7XM7PV5VjWpZKciDUANNOuo0aDjhDoTVUtYZvZg2AEoZKowyA5goc1xvCW-cc6EbRRvExIr-7LsWcE7T1R-rebfqqKan3dOp_OvUPHf4N26Ba2Q</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>ROUIBAH, K.</creator><creator>BELLOUR, A.</creator><creator>LIMA, P.</creator><creator>RAWASHDEH, E.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220101</creationdate><title>Iterative Continuous Collocation Method for Solving Nonlinear Volterra Integral Equations</title><author>ROUIBAH, K. ; BELLOUR, A. ; LIMA, P. ; RAWASHDEH, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-53e019e28c5cb6204c91ef916f93b7dee64915969ee836ec38b03fccce8d61d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROUIBAH, K.</creatorcontrib><creatorcontrib>BELLOUR, A.</creatorcontrib><creatorcontrib>LIMA, P.</creatorcontrib><creatorcontrib>RAWASHDEH, E.</creatorcontrib><creatorcontrib>Ecole Normale Supérieure de Constantine Constantine-Algeria</creatorcontrib><creatorcontrib>University Center Abdelhafid Boussouf Mila, Algeria</creatorcontrib><creatorcontrib>Instituto Superior Técnico, University of Lisbon, portugal</creatorcontrib><creatorcontrib>Yarmouk University Irbid-Jordan</creatorcontrib><collection>CrossRef</collection><jtitle>Kragujevac Journal of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROUIBAH, K.</au><au>BELLOUR, A.</au><au>LIMA, P.</au><au>RAWASHDEH, E.</au><aucorp>Ecole Normale Supérieure de Constantine Constantine-Algeria</aucorp><aucorp>University Center Abdelhafid Boussouf Mila, Algeria</aucorp><aucorp>Instituto Superior Técnico, University of Lisbon, portugal</aucorp><aucorp>Yarmouk University Irbid-Jordan</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative Continuous Collocation Method for Solving Nonlinear Volterra Integral Equations</atitle><jtitle>Kragujevac Journal of Mathematics</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>46</volume><issue>4</issue><spage>635</spage><epage>648</epage><pages>635-648</pages><issn>1450-9628</issn><eissn>2406-3045</eissn><abstract>This paper is concerned with the numerical solution of nonlinear Volterra integral equations. The main purpose of this work is to provide a new numerical approach based on the use of continuous collocation Lagrange polynomials for the numerical solution of nonlinear Volterra integral equations. It is shown that this method is convergent. The results are compared with the results obtained by other well-known numerical methods to prove the effectiveness of the presented algorithm.</abstract><doi>10.46793/KgJMat2204.635R</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1450-9628 |
ispartof | Kragujevac Journal of Mathematics, 2022-01, Vol.46 (4), p.635-648 |
issn | 1450-9628 2406-3045 |
language | eng |
recordid | cdi_crossref_primary_10_46793_KgJMat2204_635R |
source | DOAJ Directory of Open Access Journals |
title | Iterative Continuous Collocation Method for Solving Nonlinear Volterra Integral Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20Continuous%20Collocation%20Method%20for%20Solving%20Nonlinear%20Volterra%20Integral%20Equations&rft.jtitle=Kragujevac%20Journal%20of%20Mathematics&rft.au=ROUIBAH,%20K.&rft.aucorp=Ecole%20Normale%20Sup%C3%A9rieure%20de%20Constantine%20Constantine-Algeria&rft.date=2022-01-01&rft.volume=46&rft.issue=4&rft.spage=635&rft.epage=648&rft.pages=635-648&rft.issn=1450-9628&rft.eissn=2406-3045&rft_id=info:doi/10.46793/KgJMat2204.635R&rft_dat=%3Ccrossref%3E10_46793_KgJMat2204_635R%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-53e019e28c5cb6204c91ef916f93b7dee64915969ee836ec38b03fccce8d61d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |