Loading…

The Perfect Codes of Non-coprime and Coprime Graphs

In this paper, we focus on the perfect and total perfect codes of the non-coprime and coprime graphs associated to the dihedral groups and finite Abelian groups. We used the advantage of independent sets and tried to present the independent polynomial for them.

Saved in:
Bibliographic Details
Published in:Kragujevac Journal of Mathematics 2025, Vol.49 (6), p.913-923
Main Authors: TOLUE, BEHNAZ, ERFANIAN, AHMAD
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 923
container_issue 6
container_start_page 913
container_title Kragujevac Journal of Mathematics
container_volume 49
creator TOLUE, BEHNAZ
ERFANIAN, AHMAD
description In this paper, we focus on the perfect and total perfect codes of the non-coprime and coprime graphs associated to the dihedral groups and finite Abelian groups. We used the advantage of independent sets and tried to present the independent polynomial for them.
doi_str_mv 10.46793/KgJMat2506.913T
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_46793_KgJMat2506_913T</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_46793_KgJMat2506_913T</sourcerecordid><originalsourceid>FETCH-LOGICAL-c83t-69660103ea17666eb1b85184351acec9ca984db53bb807a267b37fae70c19c143</originalsourceid><addsrcrecordid>eNpFj0tPwzAQhC0EElHpnWP-gMs6a6_tI6qgPMrjkHtkOxsKgqayc-Hf01IkTjPSjEbzCXGpYKHJerx6fHt4ClNjgBZeYXsiqkYDSQRtTkWltAHpqXHnYl7KBwA0bl_TthLYbrh-5Txwmurl2HOpx6F-Hrcyjbv8_sV12Pb74OhXOew25UKcDeGz8PxPZ6K9vWmXd3L9srpfXq9lcjhJ8kSgADkoS0QcVXRGOY1GhcTJp-Cd7qPBGB3Y0JCNaIfAFpLySWmcCTjOpjyWknnoDidC_u4UdL_Y3T92d8DGH6XzSiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Perfect Codes of Non-coprime and Coprime Graphs</title><source>DOAJ Directory of Open Access Journals</source><creator>TOLUE, BEHNAZ ; ERFANIAN, AHMAD</creator><creatorcontrib>TOLUE, BEHNAZ ; ERFANIAN, AHMAD ; Department of Pure Mathematics, Hakim Sabzevari University, Iran ; Department of Mathematics and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Iran</creatorcontrib><description>In this paper, we focus on the perfect and total perfect codes of the non-coprime and coprime graphs associated to the dihedral groups and finite Abelian groups. We used the advantage of independent sets and tried to present the independent polynomial for them.</description><identifier>ISSN: 1450-9628</identifier><identifier>EISSN: 2406-3045</identifier><identifier>DOI: 10.46793/KgJMat2506.913T</identifier><language>eng</language><ispartof>Kragujevac Journal of Mathematics, 2025, Vol.49 (6), p.913-923</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>TOLUE, BEHNAZ</creatorcontrib><creatorcontrib>ERFANIAN, AHMAD</creatorcontrib><creatorcontrib>Department of Pure Mathematics, Hakim Sabzevari University, Iran</creatorcontrib><creatorcontrib>Department of Mathematics and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Iran</creatorcontrib><title>The Perfect Codes of Non-coprime and Coprime Graphs</title><title>Kragujevac Journal of Mathematics</title><description>In this paper, we focus on the perfect and total perfect codes of the non-coprime and coprime graphs associated to the dihedral groups and finite Abelian groups. We used the advantage of independent sets and tried to present the independent polynomial for them.</description><issn>1450-9628</issn><issn>2406-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpFj0tPwzAQhC0EElHpnWP-gMs6a6_tI6qgPMrjkHtkOxsKgqayc-Hf01IkTjPSjEbzCXGpYKHJerx6fHt4ClNjgBZeYXsiqkYDSQRtTkWltAHpqXHnYl7KBwA0bl_TthLYbrh-5Txwmurl2HOpx6F-Hrcyjbv8_sV12Pb74OhXOew25UKcDeGz8PxPZ6K9vWmXd3L9srpfXq9lcjhJ8kSgADkoS0QcVXRGOY1GhcTJp-Cd7qPBGB3Y0JCNaIfAFpLySWmcCTjOpjyWknnoDidC_u4UdL_Y3T92d8DGH6XzSiY</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>TOLUE, BEHNAZ</creator><creator>ERFANIAN, AHMAD</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>The Perfect Codes of Non-coprime and Coprime Graphs</title><author>TOLUE, BEHNAZ ; ERFANIAN, AHMAD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c83t-69660103ea17666eb1b85184351acec9ca984db53bb807a267b37fae70c19c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TOLUE, BEHNAZ</creatorcontrib><creatorcontrib>ERFANIAN, AHMAD</creatorcontrib><creatorcontrib>Department of Pure Mathematics, Hakim Sabzevari University, Iran</creatorcontrib><creatorcontrib>Department of Mathematics and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Iran</creatorcontrib><collection>CrossRef</collection><jtitle>Kragujevac Journal of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TOLUE, BEHNAZ</au><au>ERFANIAN, AHMAD</au><aucorp>Department of Pure Mathematics, Hakim Sabzevari University, Iran</aucorp><aucorp>Department of Mathematics and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Iran</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Perfect Codes of Non-coprime and Coprime Graphs</atitle><jtitle>Kragujevac Journal of Mathematics</jtitle><date>2025</date><risdate>2025</risdate><volume>49</volume><issue>6</issue><spage>913</spage><epage>923</epage><pages>913-923</pages><issn>1450-9628</issn><eissn>2406-3045</eissn><abstract>In this paper, we focus on the perfect and total perfect codes of the non-coprime and coprime graphs associated to the dihedral groups and finite Abelian groups. We used the advantage of independent sets and tried to present the independent polynomial for them.</abstract><doi>10.46793/KgJMat2506.913T</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1450-9628
ispartof Kragujevac Journal of Mathematics, 2025, Vol.49 (6), p.913-923
issn 1450-9628
2406-3045
language eng
recordid cdi_crossref_primary_10_46793_KgJMat2506_913T
source DOAJ Directory of Open Access Journals
title The Perfect Codes of Non-coprime and Coprime Graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Perfect%20Codes%20of%20Non-coprime%20and%20Coprime%20Graphs&rft.jtitle=Kragujevac%20Journal%20of%20Mathematics&rft.au=TOLUE,%20BEHNAZ&rft.aucorp=Department%20of%20Pure%20Mathematics,%20Hakim%20Sabzevari%20University,%20Iran&rft.date=2025&rft.volume=49&rft.issue=6&rft.spage=913&rft.epage=923&rft.pages=913-923&rft.issn=1450-9628&rft.eissn=2406-3045&rft_id=info:doi/10.46793/KgJMat2506.913T&rft_dat=%3Ccrossref%3E10_46793_KgJMat2506_913T%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c83t-69660103ea17666eb1b85184351acec9ca984db53bb807a267b37fae70c19c143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true