Loading…
The Perfect Codes of Non-coprime and Coprime Graphs
In this paper, we focus on the perfect and total perfect codes of the non-coprime and coprime graphs associated to the dihedral groups and finite Abelian groups. We used the advantage of independent sets and tried to present the independent polynomial for them.
Saved in:
Published in: | Kragujevac Journal of Mathematics 2025, Vol.49 (6), p.913-923 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 923 |
container_issue | 6 |
container_start_page | 913 |
container_title | Kragujevac Journal of Mathematics |
container_volume | 49 |
creator | TOLUE, BEHNAZ ERFANIAN, AHMAD |
description | In this paper, we focus on the perfect and total perfect codes of the non-coprime and coprime graphs associated to the dihedral groups and finite Abelian groups. We used the advantage of independent sets and tried to present the independent polynomial for them. |
doi_str_mv | 10.46793/KgJMat2506.913T |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_46793_KgJMat2506_913T</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_46793_KgJMat2506_913T</sourcerecordid><originalsourceid>FETCH-LOGICAL-c83t-69660103ea17666eb1b85184351acec9ca984db53bb807a267b37fae70c19c143</originalsourceid><addsrcrecordid>eNpFj0tPwzAQhC0EElHpnWP-gMs6a6_tI6qgPMrjkHtkOxsKgqayc-Hf01IkTjPSjEbzCXGpYKHJerx6fHt4ClNjgBZeYXsiqkYDSQRtTkWltAHpqXHnYl7KBwA0bl_TthLYbrh-5Txwmurl2HOpx6F-Hrcyjbv8_sV12Pb74OhXOew25UKcDeGz8PxPZ6K9vWmXd3L9srpfXq9lcjhJ8kSgADkoS0QcVXRGOY1GhcTJp-Cd7qPBGB3Y0JCNaIfAFpLySWmcCTjOpjyWknnoDidC_u4UdL_Y3T92d8DGH6XzSiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Perfect Codes of Non-coprime and Coprime Graphs</title><source>DOAJ Directory of Open Access Journals</source><creator>TOLUE, BEHNAZ ; ERFANIAN, AHMAD</creator><creatorcontrib>TOLUE, BEHNAZ ; ERFANIAN, AHMAD ; Department of Pure Mathematics, Hakim Sabzevari University, Iran ; Department of Mathematics and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Iran</creatorcontrib><description>In this paper, we focus on the perfect and total perfect codes of the non-coprime and coprime graphs associated to the dihedral groups and finite Abelian groups. We used the advantage of independent sets and tried to present the independent polynomial for them.</description><identifier>ISSN: 1450-9628</identifier><identifier>EISSN: 2406-3045</identifier><identifier>DOI: 10.46793/KgJMat2506.913T</identifier><language>eng</language><ispartof>Kragujevac Journal of Mathematics, 2025, Vol.49 (6), p.913-923</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>TOLUE, BEHNAZ</creatorcontrib><creatorcontrib>ERFANIAN, AHMAD</creatorcontrib><creatorcontrib>Department of Pure Mathematics, Hakim Sabzevari University, Iran</creatorcontrib><creatorcontrib>Department of Mathematics and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Iran</creatorcontrib><title>The Perfect Codes of Non-coprime and Coprime Graphs</title><title>Kragujevac Journal of Mathematics</title><description>In this paper, we focus on the perfect and total perfect codes of the non-coprime and coprime graphs associated to the dihedral groups and finite Abelian groups. We used the advantage of independent sets and tried to present the independent polynomial for them.</description><issn>1450-9628</issn><issn>2406-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpFj0tPwzAQhC0EElHpnWP-gMs6a6_tI6qgPMrjkHtkOxsKgqayc-Hf01IkTjPSjEbzCXGpYKHJerx6fHt4ClNjgBZeYXsiqkYDSQRtTkWltAHpqXHnYl7KBwA0bl_TthLYbrh-5Txwmurl2HOpx6F-Hrcyjbv8_sV12Pb74OhXOew25UKcDeGz8PxPZ6K9vWmXd3L9srpfXq9lcjhJ8kSgADkoS0QcVXRGOY1GhcTJp-Cd7qPBGB3Y0JCNaIfAFpLySWmcCTjOpjyWknnoDidC_u4UdL_Y3T92d8DGH6XzSiY</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>TOLUE, BEHNAZ</creator><creator>ERFANIAN, AHMAD</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>The Perfect Codes of Non-coprime and Coprime Graphs</title><author>TOLUE, BEHNAZ ; ERFANIAN, AHMAD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c83t-69660103ea17666eb1b85184351acec9ca984db53bb807a267b37fae70c19c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TOLUE, BEHNAZ</creatorcontrib><creatorcontrib>ERFANIAN, AHMAD</creatorcontrib><creatorcontrib>Department of Pure Mathematics, Hakim Sabzevari University, Iran</creatorcontrib><creatorcontrib>Department of Mathematics and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Iran</creatorcontrib><collection>CrossRef</collection><jtitle>Kragujevac Journal of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TOLUE, BEHNAZ</au><au>ERFANIAN, AHMAD</au><aucorp>Department of Pure Mathematics, Hakim Sabzevari University, Iran</aucorp><aucorp>Department of Mathematics and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Iran</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Perfect Codes of Non-coprime and Coprime Graphs</atitle><jtitle>Kragujevac Journal of Mathematics</jtitle><date>2025</date><risdate>2025</risdate><volume>49</volume><issue>6</issue><spage>913</spage><epage>923</epage><pages>913-923</pages><issn>1450-9628</issn><eissn>2406-3045</eissn><abstract>In this paper, we focus on the perfect and total perfect codes of the non-coprime and coprime graphs associated to the dihedral groups and finite Abelian groups. We used the advantage of independent sets and tried to present the independent polynomial for them.</abstract><doi>10.46793/KgJMat2506.913T</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1450-9628 |
ispartof | Kragujevac Journal of Mathematics, 2025, Vol.49 (6), p.913-923 |
issn | 1450-9628 2406-3045 |
language | eng |
recordid | cdi_crossref_primary_10_46793_KgJMat2506_913T |
source | DOAJ Directory of Open Access Journals |
title | The Perfect Codes of Non-coprime and Coprime Graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Perfect%20Codes%20of%20Non-coprime%20and%20Coprime%20Graphs&rft.jtitle=Kragujevac%20Journal%20of%20Mathematics&rft.au=TOLUE,%20BEHNAZ&rft.aucorp=Department%20of%20Pure%20Mathematics,%20Hakim%20Sabzevari%20University,%20Iran&rft.date=2025&rft.volume=49&rft.issue=6&rft.spage=913&rft.epage=923&rft.pages=913-923&rft.issn=1450-9628&rft.eissn=2406-3045&rft_id=info:doi/10.46793/KgJMat2506.913T&rft_dat=%3Ccrossref%3E10_46793_KgJMat2506_913T%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c83t-69660103ea17666eb1b85184351acec9ca984db53bb807a267b37fae70c19c143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |