Loading…

Stochastic Sizing of Energy Storage Systems for Wind Integration

In this paper, we present an optimal capacity decision model for energy storage systems (ESSs) in combined operation with wind energy in power systems. We use a two-stage stochastic programming approach to take into account both wind and load uncertainties. The planning problem is formulated as an A...

Full description

Saved in:
Bibliographic Details
Published in:Engineering, technology & applied science research technology & applied science research, 2018-06, Vol.8 (3), p.2901-2906
Main Authors: Le, D. D., Nguyen, N. T. A.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c158t-4024a25d65058607d06835fe88d175e3df2688a2e4d5d0d1f491664db11ea6dd3
container_end_page 2906
container_issue 3
container_start_page 2901
container_title Engineering, technology & applied science research
container_volume 8
creator Le, D. D.
Nguyen, N. T. A.
description In this paper, we present an optimal capacity decision model for energy storage systems (ESSs) in combined operation with wind energy in power systems. We use a two-stage stochastic programming approach to take into account both wind and load uncertainties. The planning problem is formulated as an AC optimal power flow (OPF) model with the objective of minimizing ESS installation cost and system operation cost. Stochastic wind and load inputs for the model are generated from historical data using clustering technique. The model is tested on the IEEE 39-bus system.
doi_str_mv 10.48084/etasr.2005
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_48084_etasr_2005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_48084_etasr_2005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c158t-4024a25d65058607d06835fe88d175e3df2688a2e4d5d0d1f491664db11ea6dd3</originalsourceid><addsrcrecordid>eNotj7FOwzAURS0EElHpxA94RynPju28bqCq0EqVGAJijEyeHYxogmwv4esJhbvc4UpH9zB2LWClEFDdumxTXEkAfcYKUa9liVCZc1ZIqUSpFNaXbJnSB8wxaFQtC3bX5LF7tymHjjfhOww9Hz3fDi72E5-3aHvHmylld0zcj5G_hoH4fsiujzaHcbhiF95-Jrf87wV7edg-b3bl4elxv7k_lJ3QmEsFUlmpyWjQaKCm-UGlvUMkUWtXkZcG0UqnSBOQ8GotjFH0JoSzhqhasJs_bhfHlKLz7VcMRxunVkB78m9P_u2vf_UDk4ROAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stochastic Sizing of Energy Storage Systems for Wind Integration</title><source>EZB Electronic Journals Library</source><creator>Le, D. D. ; Nguyen, N. T. A.</creator><creatorcontrib>Le, D. D. ; Nguyen, N. T. A.</creatorcontrib><description>In this paper, we present an optimal capacity decision model for energy storage systems (ESSs) in combined operation with wind energy in power systems. We use a two-stage stochastic programming approach to take into account both wind and load uncertainties. The planning problem is formulated as an AC optimal power flow (OPF) model with the objective of minimizing ESS installation cost and system operation cost. Stochastic wind and load inputs for the model are generated from historical data using clustering technique. The model is tested on the IEEE 39-bus system.</description><identifier>ISSN: 2241-4487</identifier><identifier>EISSN: 1792-8036</identifier><identifier>DOI: 10.48084/etasr.2005</identifier><language>eng</language><ispartof>Engineering, technology &amp; applied science research, 2018-06, Vol.8 (3), p.2901-2906</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c158t-4024a25d65058607d06835fe88d175e3df2688a2e4d5d0d1f491664db11ea6dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Le, D. D.</creatorcontrib><creatorcontrib>Nguyen, N. T. A.</creatorcontrib><title>Stochastic Sizing of Energy Storage Systems for Wind Integration</title><title>Engineering, technology &amp; applied science research</title><description>In this paper, we present an optimal capacity decision model for energy storage systems (ESSs) in combined operation with wind energy in power systems. We use a two-stage stochastic programming approach to take into account both wind and load uncertainties. The planning problem is formulated as an AC optimal power flow (OPF) model with the objective of minimizing ESS installation cost and system operation cost. Stochastic wind and load inputs for the model are generated from historical data using clustering technique. The model is tested on the IEEE 39-bus system.</description><issn>2241-4487</issn><issn>1792-8036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotj7FOwzAURS0EElHpxA94RynPju28bqCq0EqVGAJijEyeHYxogmwv4esJhbvc4UpH9zB2LWClEFDdumxTXEkAfcYKUa9liVCZc1ZIqUSpFNaXbJnSB8wxaFQtC3bX5LF7tymHjjfhOww9Hz3fDi72E5-3aHvHmylld0zcj5G_hoH4fsiujzaHcbhiF95-Jrf87wV7edg-b3bl4elxv7k_lJ3QmEsFUlmpyWjQaKCm-UGlvUMkUWtXkZcG0UqnSBOQ8GotjFH0JoSzhqhasJs_bhfHlKLz7VcMRxunVkB78m9P_u2vf_UDk4ROAA</recordid><startdate>20180619</startdate><enddate>20180619</enddate><creator>Le, D. D.</creator><creator>Nguyen, N. T. A.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180619</creationdate><title>Stochastic Sizing of Energy Storage Systems for Wind Integration</title><author>Le, D. D. ; Nguyen, N. T. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c158t-4024a25d65058607d06835fe88d175e3df2688a2e4d5d0d1f491664db11ea6dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, D. D.</creatorcontrib><creatorcontrib>Nguyen, N. T. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Engineering, technology &amp; applied science research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, D. D.</au><au>Nguyen, N. T. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Sizing of Energy Storage Systems for Wind Integration</atitle><jtitle>Engineering, technology &amp; applied science research</jtitle><date>2018-06-19</date><risdate>2018</risdate><volume>8</volume><issue>3</issue><spage>2901</spage><epage>2906</epage><pages>2901-2906</pages><issn>2241-4487</issn><eissn>1792-8036</eissn><abstract>In this paper, we present an optimal capacity decision model for energy storage systems (ESSs) in combined operation with wind energy in power systems. We use a two-stage stochastic programming approach to take into account both wind and load uncertainties. The planning problem is formulated as an AC optimal power flow (OPF) model with the objective of minimizing ESS installation cost and system operation cost. Stochastic wind and load inputs for the model are generated from historical data using clustering technique. The model is tested on the IEEE 39-bus system.</abstract><doi>10.48084/etasr.2005</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2241-4487
ispartof Engineering, technology & applied science research, 2018-06, Vol.8 (3), p.2901-2906
issn 2241-4487
1792-8036
language eng
recordid cdi_crossref_primary_10_48084_etasr_2005
source EZB Electronic Journals Library
title Stochastic Sizing of Energy Storage Systems for Wind Integration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Sizing%20of%20Energy%20Storage%20Systems%20for%20Wind%20Integration&rft.jtitle=Engineering,%20technology%20&%20applied%20science%20research&rft.au=Le,%20D.%20D.&rft.date=2018-06-19&rft.volume=8&rft.issue=3&rft.spage=2901&rft.epage=2906&rft.pages=2901-2906&rft.issn=2241-4487&rft.eissn=1792-8036&rft_id=info:doi/10.48084/etasr.2005&rft_dat=%3Ccrossref%3E10_48084_etasr_2005%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c158t-4024a25d65058607d06835fe88d175e3df2688a2e4d5d0d1f491664db11ea6dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true