Loading…
Optimal Allocation of Synchrophasor Units in the Distribution Network Considering Maximum Redundancy
Phasor Measurement Unit (PMU) is a smart measuring device commonly used in wide-area monitoring systems. It provides the synchronized phasor values and the magnitudes of voltages and currents in real-time for the proper state calculation of the electrical network in a common time reference frame. Bu...
Saved in:
Published in: | Engineering, technology & applied science research technology & applied science research, 2020-12, Vol.10 (6), p.6494-6499 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phasor Measurement Unit (PMU) is a smart measuring device commonly used in wide-area monitoring systems. It provides the synchronized phasor values and the magnitudes of voltages and currents in real-time for the proper state calculation of the electrical network in a common time reference frame. But in order to avoid unnecessary placements, minimize installation cost, and due to the lack of communication facilities at the substations, the placing of PMUs at every location is not possible. Therefore several optimization techniques have been developed to solve the Optimal PMU Placement (OPP) problem. The OPP problem aims to reduce the number of PMUs by achieving a completely observable network. Many solutions to the OPP problem have been proposed for the transmission networks with the use of conventional and heuristic-based approaches, but very few for distribution networks. In this paper, the Binary Grey Wolf Optimization (BGWO) algorithm is proposed to solve the OPP problem considering the measurement redundancy (MR) to achieve complete observability of the distribution network. Finally, case studies have been done by implementing the proposed algorithm on different IEEE test feeders such as the IEEE -13, -33, -37, and -123 node feeder systems. The obtained results are compared with previous studies to verify the feasibility and efficiency of the proposed technique. |
---|---|
ISSN: | 2241-4487 1792-8036 |
DOI: | 10.48084/etasr.3862 |