Loading…

The Behavior of RC Beams Retrofitted with Carbon Fiber Reinforced Polymers (CFRP)

The need for the introduction of economical and quicker retrofitting techniques is increasing due to the ever-aging infrastructure and damages produced by major catastrophic events around the world. The application of Carbon Fiber Reinforced Polymers (CFRP) for strengthening and retrofitting of rein...

Full description

Saved in:
Bibliographic Details
Published in:Engineering, technology & applied science research technology & applied science research, 2022-06, Vol.12 (3), p.8701-8706
Main Authors: Fahim, M., Alam, F., Khan, H., Haq, I. U., Ullah, S., Zaman, S.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The need for the introduction of economical and quicker retrofitting techniques is increasing due to the ever-aging infrastructure and damages produced by major catastrophic events around the world. The application of Carbon Fiber Reinforced Polymers (CFRP) for strengthening and retrofitting of reinforced concrete structures is gaining popularity due to its higher strength, lightweight, durability, corrosion resistance, and aesthetic value. This study presents the results of two strengthened and two retrofitted beams in comparison to control specimens. Two specimens were strengthened and two were retrofitted by attaching CFRP (Sika Carbo-Dur S812 or Sika-Wrap 230C) to the tension side of the beams using high strength epoxy. The results show that one CFRP strip/wrap simply attached at the tension side can help the damaged beam regain/pass the original strength. All specimens fail due to debonding of CFRP from the concrete surface emphasizing the need for efficient anchorage systems. Among the four patterns adopted, CFRP strips along with u-shaped anchorages at the ends provided the highest strength enhancement of 17.36%.
ISSN:2241-4487
1792-8036
DOI:10.48084/etasr.4926