Loading…

Application of Neural Networks for the Estimation of the Shear Strength of Circular RC Columns

This study aims to develop Artificial Neural Networks (ANNs) for predicting the shear strength of circular Reinforced Concrete (RC) columns. A set of 156 experimental data samples of various circular RC columns were utilized to establish the ANN model. The performance results of the ANN model show t...

Full description

Saved in:
Bibliographic Details
Published in:Engineering, technology & applied science research technology & applied science research, 2022-12, Vol.12 (6), p.9409-9413
Main Authors: Ho, V. C., Nguyen, T. H., Nguyen, T. Q., Nguyen, D. D.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c270t-ba8a737de6cdc22db83456d2fb7ba4512ea273137fcac3e1359ca6c4841e7bfc3
cites cdi_FETCH-LOGICAL-c270t-ba8a737de6cdc22db83456d2fb7ba4512ea273137fcac3e1359ca6c4841e7bfc3
container_end_page 9413
container_issue 6
container_start_page 9409
container_title Engineering, technology & applied science research
container_volume 12
creator Ho, V. C.
Nguyen, T. H.
Nguyen, T. Q.
Nguyen, D. D.
description This study aims to develop Artificial Neural Networks (ANNs) for predicting the shear strength of circular Reinforced Concrete (RC) columns. A set of 156 experimental data samples of various circular RC columns were utilized to establish the ANN model. The performance results of the ANN model show that it predicts the shear strength of circular RC columns accurately with a high coefficient of determination (0.99) and a small root-mean-square error (4.6kN). The result comparison reveals that the proposed ANN model can predict the shear strength of the columns more accurately than the existing equations. Moreover, an ANN-based formula is proposed to explicitly calculate the shear strength of the columns. Additionally, a practical Graphical User Interface (GUI) tool is developed for facilitating the practical design process of the circular RC columns.
doi_str_mv 10.48084/etasr.5245
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_48084_etasr_5245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_48084_etasr_5245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ba8a737de6cdc22db83456d2fb7ba4512ea273137fcac3e1359ca6c4841e7bfc3</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoWOau_AO5l858NckuR5kfMBSc3lrSNLHVrClJivjv107x3Bx4eHk5PABcY7RiEkl2a5KKYVUQVpyBDIs1ySWi_BxkhDCcMybFJVjG-ImmcMmZIBl43wyD67RKne-ht_DJjEG5qdK3D18RWh9gag3cxtQd_q9msm-NCnCfguk_UjvTsgt6dBN8KWHp3Xjo4xW4sMpFs_zrBXi7276WD_nu-f6x3OxyTQRKea2kElQ0hutGE9LUkrKCN8TWolaswMQoIiimwmqlqcG0WGvFNZMMG1FbTRfg5vevDj7GYGw1hGlv-Kkwqk52qpOdarZDjy-HWfE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Neural Networks for the Estimation of the Shear Strength of Circular RC Columns</title><source>EZB Electronic Journals Library</source><creator>Ho, V. C. ; Nguyen, T. H. ; Nguyen, T. Q. ; Nguyen, D. D.</creator><creatorcontrib>Ho, V. C. ; Nguyen, T. H. ; Nguyen, T. Q. ; Nguyen, D. D.</creatorcontrib><description>This study aims to develop Artificial Neural Networks (ANNs) for predicting the shear strength of circular Reinforced Concrete (RC) columns. A set of 156 experimental data samples of various circular RC columns were utilized to establish the ANN model. The performance results of the ANN model show that it predicts the shear strength of circular RC columns accurately with a high coefficient of determination (0.99) and a small root-mean-square error (4.6kN). The result comparison reveals that the proposed ANN model can predict the shear strength of the columns more accurately than the existing equations. Moreover, an ANN-based formula is proposed to explicitly calculate the shear strength of the columns. Additionally, a practical Graphical User Interface (GUI) tool is developed for facilitating the practical design process of the circular RC columns.</description><identifier>ISSN: 2241-4487</identifier><identifier>EISSN: 1792-8036</identifier><identifier>DOI: 10.48084/etasr.5245</identifier><language>eng</language><ispartof>Engineering, technology &amp; applied science research, 2022-12, Vol.12 (6), p.9409-9413</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-ba8a737de6cdc22db83456d2fb7ba4512ea273137fcac3e1359ca6c4841e7bfc3</citedby><cites>FETCH-LOGICAL-c270t-ba8a737de6cdc22db83456d2fb7ba4512ea273137fcac3e1359ca6c4841e7bfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ho, V. C.</creatorcontrib><creatorcontrib>Nguyen, T. H.</creatorcontrib><creatorcontrib>Nguyen, T. Q.</creatorcontrib><creatorcontrib>Nguyen, D. D.</creatorcontrib><title>Application of Neural Networks for the Estimation of the Shear Strength of Circular RC Columns</title><title>Engineering, technology &amp; applied science research</title><description>This study aims to develop Artificial Neural Networks (ANNs) for predicting the shear strength of circular Reinforced Concrete (RC) columns. A set of 156 experimental data samples of various circular RC columns were utilized to establish the ANN model. The performance results of the ANN model show that it predicts the shear strength of circular RC columns accurately with a high coefficient of determination (0.99) and a small root-mean-square error (4.6kN). The result comparison reveals that the proposed ANN model can predict the shear strength of the columns more accurately than the existing equations. Moreover, an ANN-based formula is proposed to explicitly calculate the shear strength of the columns. Additionally, a practical Graphical User Interface (GUI) tool is developed for facilitating the practical design process of the circular RC columns.</description><issn>2241-4487</issn><issn>1792-8036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAYhYMoWOau_AO5l858NckuR5kfMBSc3lrSNLHVrClJivjv107x3Bx4eHk5PABcY7RiEkl2a5KKYVUQVpyBDIs1ySWi_BxkhDCcMybFJVjG-ImmcMmZIBl43wyD67RKne-ht_DJjEG5qdK3D18RWh9gag3cxtQd_q9msm-NCnCfguk_UjvTsgt6dBN8KWHp3Xjo4xW4sMpFs_zrBXi7276WD_nu-f6x3OxyTQRKea2kElQ0hutGE9LUkrKCN8TWolaswMQoIiimwmqlqcG0WGvFNZMMG1FbTRfg5vevDj7GYGw1hGlv-Kkwqk52qpOdarZDjy-HWfE</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Ho, V. C.</creator><creator>Nguyen, T. H.</creator><creator>Nguyen, T. Q.</creator><creator>Nguyen, D. D.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Application of Neural Networks for the Estimation of the Shear Strength of Circular RC Columns</title><author>Ho, V. C. ; Nguyen, T. H. ; Nguyen, T. Q. ; Nguyen, D. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ba8a737de6cdc22db83456d2fb7ba4512ea273137fcac3e1359ca6c4841e7bfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, V. C.</creatorcontrib><creatorcontrib>Nguyen, T. H.</creatorcontrib><creatorcontrib>Nguyen, T. Q.</creatorcontrib><creatorcontrib>Nguyen, D. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Engineering, technology &amp; applied science research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, V. C.</au><au>Nguyen, T. H.</au><au>Nguyen, T. Q.</au><au>Nguyen, D. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Neural Networks for the Estimation of the Shear Strength of Circular RC Columns</atitle><jtitle>Engineering, technology &amp; applied science research</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>12</volume><issue>6</issue><spage>9409</spage><epage>9413</epage><pages>9409-9413</pages><issn>2241-4487</issn><eissn>1792-8036</eissn><abstract>This study aims to develop Artificial Neural Networks (ANNs) for predicting the shear strength of circular Reinforced Concrete (RC) columns. A set of 156 experimental data samples of various circular RC columns were utilized to establish the ANN model. The performance results of the ANN model show that it predicts the shear strength of circular RC columns accurately with a high coefficient of determination (0.99) and a small root-mean-square error (4.6kN). The result comparison reveals that the proposed ANN model can predict the shear strength of the columns more accurately than the existing equations. Moreover, an ANN-based formula is proposed to explicitly calculate the shear strength of the columns. Additionally, a practical Graphical User Interface (GUI) tool is developed for facilitating the practical design process of the circular RC columns.</abstract><doi>10.48084/etasr.5245</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2241-4487
ispartof Engineering, technology & applied science research, 2022-12, Vol.12 (6), p.9409-9413
issn 2241-4487
1792-8036
language eng
recordid cdi_crossref_primary_10_48084_etasr_5245
source EZB Electronic Journals Library
title Application of Neural Networks for the Estimation of the Shear Strength of Circular RC Columns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Neural%20Networks%20for%20the%20Estimation%20of%20the%20Shear%20Strength%20of%20Circular%20RC%20Columns&rft.jtitle=Engineering,%20technology%20&%20applied%20science%20research&rft.au=Ho,%20V.%20C.&rft.date=2022-12-01&rft.volume=12&rft.issue=6&rft.spage=9409&rft.epage=9413&rft.pages=9409-9413&rft.issn=2241-4487&rft.eissn=1792-8036&rft_id=info:doi/10.48084/etasr.5245&rft_dat=%3Ccrossref%3E10_48084_etasr_5245%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-ba8a737de6cdc22db83456d2fb7ba4512ea273137fcac3e1359ca6c4841e7bfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true