Loading…

Probabilistic Load Flow Considering Wind Generation Uncertainty

Renewable energy sources, such as wind, solar and hydro, are increasingly incorporated into power grids, as a direct consequence of energy and environmental issues. These types of energies are variable and intermittent by nature and their exploitation introduces uncertainties into the power grid. Th...

Full description

Saved in:
Bibliographic Details
Published in:Engineering, technology & applied science research technology & applied science research, 2011-10, Vol.1 (5), p.126-132
Main Authors: Aien, M., Ramezani, R., Mohsen Ghavami, S.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Renewable energy sources, such as wind, solar and hydro, are increasingly incorporated into power grids, as a direct consequence of energy and environmental issues. These types of energies are variable and intermittent by nature and their exploitation introduces uncertainties into the power grid. Therefore, probabilistic analysis of the system performance is of significant interest. This paper describes a new approach to Probabilistic Load Flow (PLF) by modifying the Two Point Estimation Method (2PEM) to cover some drawbacks of other currently used methods. The proposed method is examined using two case studies, the IEEE 9-bus and the IEEE 57-bus test systems. In order to justify the effectiveness of the method, numerical comparison with Monte Carlo Simulation (MCS) method is presented. Simulation results indicate that the proposed method significantly reduces the computational burden while maintaining a high level of accuracy. Moreover, that the unsymmetrical 2PEM has a higher level of accuracy than the symmetrical 2PEM with equal computing burden, when the Probability Density Function (PDF) of uncertain variables is asymmetric.
ISSN:2241-4487
1792-8036
DOI:10.48084/etasr.64