Loading…

Research on the Influence of Hyperparameters on the LightGBM Model in Load Forecasting

Electric load forecasting plays a vital role in all aspects of the electrical system, including generation, transmission, distribution, and electricity retail. The LightGBM ensemble learning method has been widely applied in load forecasting and has yielded many positive results. This study presents...

Full description

Saved in:
Bibliographic Details
Published in:Engineering, technology & applied science research technology & applied science research, 2024-10, Vol.14 (5), p.17005-17010
Main Authors: Nguyen, Khanh-Toan, Tran, Thanh-Ngoc, Nguyen, Huy-Tuan
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c736-107a484af852d574702a4a6be5fc4d9d90804921e61cc442fb1e0ef3357ea8c93
container_end_page 17010
container_issue 5
container_start_page 17005
container_title Engineering, technology & applied science research
container_volume 14
creator Nguyen, Khanh-Toan
Tran, Thanh-Ngoc
Nguyen, Huy-Tuan
description Electric load forecasting plays a vital role in all aspects of the electrical system, including generation, transmission, distribution, and electricity retail. The LightGBM ensemble learning method has been widely applied in load forecasting and has yielded many positive results. This study presents an algorithm combining the grid space of hyperparameters with cross-validation to evaluate the accuracy of LightGBM models across different hyperparameter values. Peak load data from Ho Chi Minh City were used to enhance the reliability of the results. Analysis of the results based on boxplot statistical charts indicated that the accuracy of the LightGBM model significantly depends on the hyperparameter values. Moreover, using default hyperparameter values may result in large errors in load forecasting.
doi_str_mv 10.48084/etasr.8266
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_48084_etasr_8266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_48084_etasr_8266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c736-107a484af852d574702a4a6be5fc4d9d90804921e61cc442fb1e0ef3357ea8c93</originalsourceid><addsrcrecordid>eNo10L1OwzAUBWALgURUOvEC3lGK7dzYzggV_ZFSIaGKNbp1rpugNInsMPTtgQJnOcvRGT7G7qVYgBUWHmnCGBZWaX3FEmkKlVqR6WuWKAUyBbDmls1j_BDf0VaDUQl7f6NIGFzDh55PDfFt77tP6h3xwfPNeaQwYsATTRTi_6Zsj820ft7x3VBTx9uelwPWfDUEchintj_esRuPXaT5X8_YfvWyX27S8nW9XT6VqTOZTqUwCBbQ21zVuQEjFALqA-XeQV3UhbACCiVJS-cAlD9IEuSzLDeE1hXZjD383rowxBjIV2NoTxjOlRTVBaW6oFQ_KNkXBelVSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Research on the Influence of Hyperparameters on the LightGBM Model in Load Forecasting</title><source>EZB Electronic Journals Library</source><creator>Nguyen, Khanh-Toan ; Tran, Thanh-Ngoc ; Nguyen, Huy-Tuan</creator><creatorcontrib>Nguyen, Khanh-Toan ; Tran, Thanh-Ngoc ; Nguyen, Huy-Tuan</creatorcontrib><description>Electric load forecasting plays a vital role in all aspects of the electrical system, including generation, transmission, distribution, and electricity retail. The LightGBM ensemble learning method has been widely applied in load forecasting and has yielded many positive results. This study presents an algorithm combining the grid space of hyperparameters with cross-validation to evaluate the accuracy of LightGBM models across different hyperparameter values. Peak load data from Ho Chi Minh City were used to enhance the reliability of the results. Analysis of the results based on boxplot statistical charts indicated that the accuracy of the LightGBM model significantly depends on the hyperparameter values. Moreover, using default hyperparameter values may result in large errors in load forecasting.</description><identifier>ISSN: 2241-4487</identifier><identifier>EISSN: 1792-8036</identifier><identifier>DOI: 10.48084/etasr.8266</identifier><language>eng</language><ispartof>Engineering, technology &amp; applied science research, 2024-10, Vol.14 (5), p.17005-17010</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c736-107a484af852d574702a4a6be5fc4d9d90804921e61cc442fb1e0ef3357ea8c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nguyen, Khanh-Toan</creatorcontrib><creatorcontrib>Tran, Thanh-Ngoc</creatorcontrib><creatorcontrib>Nguyen, Huy-Tuan</creatorcontrib><title>Research on the Influence of Hyperparameters on the LightGBM Model in Load Forecasting</title><title>Engineering, technology &amp; applied science research</title><description>Electric load forecasting plays a vital role in all aspects of the electrical system, including generation, transmission, distribution, and electricity retail. The LightGBM ensemble learning method has been widely applied in load forecasting and has yielded many positive results. This study presents an algorithm combining the grid space of hyperparameters with cross-validation to evaluate the accuracy of LightGBM models across different hyperparameter values. Peak load data from Ho Chi Minh City were used to enhance the reliability of the results. Analysis of the results based on boxplot statistical charts indicated that the accuracy of the LightGBM model significantly depends on the hyperparameter values. Moreover, using default hyperparameter values may result in large errors in load forecasting.</description><issn>2241-4487</issn><issn>1792-8036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo10L1OwzAUBWALgURUOvEC3lGK7dzYzggV_ZFSIaGKNbp1rpugNInsMPTtgQJnOcvRGT7G7qVYgBUWHmnCGBZWaX3FEmkKlVqR6WuWKAUyBbDmls1j_BDf0VaDUQl7f6NIGFzDh55PDfFt77tP6h3xwfPNeaQwYsATTRTi_6Zsj820ft7x3VBTx9uelwPWfDUEchintj_esRuPXaT5X8_YfvWyX27S8nW9XT6VqTOZTqUwCBbQ21zVuQEjFALqA-XeQV3UhbACCiVJS-cAlD9IEuSzLDeE1hXZjD383rowxBjIV2NoTxjOlRTVBaW6oFQ_KNkXBelVSA</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>Nguyen, Khanh-Toan</creator><creator>Tran, Thanh-Ngoc</creator><creator>Nguyen, Huy-Tuan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241009</creationdate><title>Research on the Influence of Hyperparameters on the LightGBM Model in Load Forecasting</title><author>Nguyen, Khanh-Toan ; Tran, Thanh-Ngoc ; Nguyen, Huy-Tuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c736-107a484af852d574702a4a6be5fc4d9d90804921e61cc442fb1e0ef3357ea8c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Khanh-Toan</creatorcontrib><creatorcontrib>Tran, Thanh-Ngoc</creatorcontrib><creatorcontrib>Nguyen, Huy-Tuan</creatorcontrib><collection>CrossRef</collection><jtitle>Engineering, technology &amp; applied science research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Khanh-Toan</au><au>Tran, Thanh-Ngoc</au><au>Nguyen, Huy-Tuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the Influence of Hyperparameters on the LightGBM Model in Load Forecasting</atitle><jtitle>Engineering, technology &amp; applied science research</jtitle><date>2024-10-09</date><risdate>2024</risdate><volume>14</volume><issue>5</issue><spage>17005</spage><epage>17010</epage><pages>17005-17010</pages><issn>2241-4487</issn><eissn>1792-8036</eissn><abstract>Electric load forecasting plays a vital role in all aspects of the electrical system, including generation, transmission, distribution, and electricity retail. The LightGBM ensemble learning method has been widely applied in load forecasting and has yielded many positive results. This study presents an algorithm combining the grid space of hyperparameters with cross-validation to evaluate the accuracy of LightGBM models across different hyperparameter values. Peak load data from Ho Chi Minh City were used to enhance the reliability of the results. Analysis of the results based on boxplot statistical charts indicated that the accuracy of the LightGBM model significantly depends on the hyperparameter values. Moreover, using default hyperparameter values may result in large errors in load forecasting.</abstract><doi>10.48084/etasr.8266</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2241-4487
ispartof Engineering, technology & applied science research, 2024-10, Vol.14 (5), p.17005-17010
issn 2241-4487
1792-8036
language eng
recordid cdi_crossref_primary_10_48084_etasr_8266
source EZB Electronic Journals Library
title Research on the Influence of Hyperparameters on the LightGBM Model in Load Forecasting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20Influence%20of%20Hyperparameters%20on%20the%20LightGBM%20Model%20in%20Load%20Forecasting&rft.jtitle=Engineering,%20technology%20&%20applied%20science%20research&rft.au=Nguyen,%20Khanh-Toan&rft.date=2024-10-09&rft.volume=14&rft.issue=5&rft.spage=17005&rft.epage=17010&rft.pages=17005-17010&rft.issn=2241-4487&rft.eissn=1792-8036&rft_id=info:doi/10.48084/etasr.8266&rft_dat=%3Ccrossref%3E10_48084_etasr_8266%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c736-107a484af852d574702a4a6be5fc4d9d90804921e61cc442fb1e0ef3357ea8c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true