Loading…

A bi-criteria optimization model for adjusting the decision tree parameters

Decision trees play a very important role in knowledge representation because of its simplicity and self explanatory nature. We study the optimization of the parameters of the decision trees to find a shorter as well as more accurate decision tree. Since these two criteria are in conflict, we need t...

Full description

Saved in:
Bibliographic Details
Published in:Kuwait journal of science 2022-04, Vol.49 (2), p.1-14
Main Authors: Azad, Mohammad A. K., Moshkov, Mikhail
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c290t-5eddf495ad703c012a23be276ef5e965787d8b42568f88c6d81c774f21dc5d3f3
cites
container_end_page 14
container_issue 2
container_start_page 1
container_title Kuwait journal of science
container_volume 49
creator Azad, Mohammad A. K.
Moshkov, Mikhail
description Decision trees play a very important role in knowledge representation because of its simplicity and self explanatory nature. We study the optimization of the parameters of the decision trees to find a shorter as well as more accurate decision tree. Since these two criteria are in conflict, we need to find a decision tree with suitable parameters that can be a trade off between two criteria. Hence, we design two algorithms to build a decision tree with a given threshold of the number of vertices based on the bi-criteria optimiza tion technique. Then, we calculate the local and global misclassification rates for these trees. Our goal is to study the effect of changing the threshold for the bi-criteria optimization of the decision trees. We apply our algorithms to 13 decision tables from UCI Machine Learning Repository and recommend the suitable threshold that can give us more accurate decision trees with a reasonable number of vertices.
doi_str_mv 10.48129/kjs.10725
format article
fullrecord <record><control><sourceid>emarefa_cross</sourceid><recordid>TN_cdi_crossref_primary_10_48129_kjs_10725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1500275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-5eddf495ad703c012a23be276ef5e965787d8b42568f88c6d81c774f21dc5d3f3</originalsourceid><addsrcrecordid>eNpF0LFOwzAQgGELgURVuvAAyDNSytmOY2esKqCISiwwR459BoemiWwzwNMTWgTT3fDdDT8hlwyWpWa8vnnv0pKB4vKEzLgAVZSMVad_O-hzskipAwAmSs6kmpHHFW1DYWPIGIOhw5hDH75MDsOe9oPDHfVDpMZ1HymH_SvNb0gd2pB-QI6IdDTR9Didpwty5s0u4eJ3zsnL3e3zelNsn-4f1qttYXkNuZDonC9raZwCYYFxw0WLXFXoJdaVVFo53ZZcVtprbSunmVWq9Jw5K53wYk6uj39tHFKK6Jsxht7Ez4ZBcyjRTCWaQ4kJXx0xTgK9-bcSgCspvgFDQlu1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A bi-criteria optimization model for adjusting the decision tree parameters</title><source>Alma/SFX Local Collection</source><creator>Azad, Mohammad A. K. ; Moshkov, Mikhail</creator><creatorcontrib>Azad, Mohammad A. K. ; Moshkov, Mikhail ; Jouf University Department of Computer Science, College of Computer and Information Sciences Sakaka 72441, Saudi Arabia ; King Abdullah University of Science and Technology Computer, Electrical and Mathematical Sciences &amp; Engineering Division Thuwal 23955-6900, Saudi Arabia</creatorcontrib><description>Decision trees play a very important role in knowledge representation because of its simplicity and self explanatory nature. We study the optimization of the parameters of the decision trees to find a shorter as well as more accurate decision tree. Since these two criteria are in conflict, we need to find a decision tree with suitable parameters that can be a trade off between two criteria. Hence, we design two algorithms to build a decision tree with a given threshold of the number of vertices based on the bi-criteria optimiza tion technique. Then, we calculate the local and global misclassification rates for these trees. Our goal is to study the effect of changing the threshold for the bi-criteria optimization of the decision trees. We apply our algorithms to 13 decision tables from UCI Machine Learning Repository and recommend the suitable threshold that can give us more accurate decision trees with a reasonable number of vertices.</description><identifier>ISSN: 2307-4108</identifier><identifier>EISSN: 2307-4116</identifier><identifier>DOI: 10.48129/kjs.10725</identifier><language>eng</language><publisher>Kuwait: Kuwait University, Academic Publication Council</publisher><ispartof>Kuwait journal of science, 2022-04, Vol.49 (2), p.1-14</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-5eddf495ad703c012a23be276ef5e965787d8b42568f88c6d81c774f21dc5d3f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Azad, Mohammad A. K.</creatorcontrib><creatorcontrib>Moshkov, Mikhail</creatorcontrib><creatorcontrib>Jouf University Department of Computer Science, College of Computer and Information Sciences Sakaka 72441, Saudi Arabia</creatorcontrib><creatorcontrib>King Abdullah University of Science and Technology Computer, Electrical and Mathematical Sciences &amp; Engineering Division Thuwal 23955-6900, Saudi Arabia</creatorcontrib><title>A bi-criteria optimization model for adjusting the decision tree parameters</title><title>Kuwait journal of science</title><description>Decision trees play a very important role in knowledge representation because of its simplicity and self explanatory nature. We study the optimization of the parameters of the decision trees to find a shorter as well as more accurate decision tree. Since these two criteria are in conflict, we need to find a decision tree with suitable parameters that can be a trade off between two criteria. Hence, we design two algorithms to build a decision tree with a given threshold of the number of vertices based on the bi-criteria optimiza tion technique. Then, we calculate the local and global misclassification rates for these trees. Our goal is to study the effect of changing the threshold for the bi-criteria optimization of the decision trees. We apply our algorithms to 13 decision tables from UCI Machine Learning Repository and recommend the suitable threshold that can give us more accurate decision trees with a reasonable number of vertices.</description><issn>2307-4108</issn><issn>2307-4116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpF0LFOwzAQgGELgURVuvAAyDNSytmOY2esKqCISiwwR459BoemiWwzwNMTWgTT3fDdDT8hlwyWpWa8vnnv0pKB4vKEzLgAVZSMVad_O-hzskipAwAmSs6kmpHHFW1DYWPIGIOhw5hDH75MDsOe9oPDHfVDpMZ1HymH_SvNb0gd2pB-QI6IdDTR9Didpwty5s0u4eJ3zsnL3e3zelNsn-4f1qttYXkNuZDonC9raZwCYYFxw0WLXFXoJdaVVFo53ZZcVtprbSunmVWq9Jw5K53wYk6uj39tHFKK6Jsxht7Ez4ZBcyjRTCWaQ4kJXx0xTgK9-bcSgCspvgFDQlu1</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Azad, Mohammad A. K.</creator><creator>Moshkov, Mikhail</creator><general>Kuwait University, Academic Publication Council</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AHMDM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220401</creationdate><title>A bi-criteria optimization model for adjusting the decision tree parameters</title><author>Azad, Mohammad A. K. ; Moshkov, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-5eddf495ad703c012a23be276ef5e965787d8b42568f88c6d81c774f21dc5d3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azad, Mohammad A. K.</creatorcontrib><creatorcontrib>Moshkov, Mikhail</creatorcontrib><creatorcontrib>Jouf University Department of Computer Science, College of Computer and Information Sciences Sakaka 72441, Saudi Arabia</creatorcontrib><creatorcontrib>King Abdullah University of Science and Technology Computer, Electrical and Mathematical Sciences &amp; Engineering Division Thuwal 23955-6900, Saudi Arabia</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة العلوم الإنسانية - e-Marefa Humanities</collection><collection>CrossRef</collection><jtitle>Kuwait journal of science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azad, Mohammad A. K.</au><au>Moshkov, Mikhail</au><aucorp>Jouf University Department of Computer Science, College of Computer and Information Sciences Sakaka 72441, Saudi Arabia</aucorp><aucorp>King Abdullah University of Science and Technology Computer, Electrical and Mathematical Sciences &amp; Engineering Division Thuwal 23955-6900, Saudi Arabia</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bi-criteria optimization model for adjusting the decision tree parameters</atitle><jtitle>Kuwait journal of science</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>49</volume><issue>2</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>2307-4108</issn><eissn>2307-4116</eissn><abstract>Decision trees play a very important role in knowledge representation because of its simplicity and self explanatory nature. We study the optimization of the parameters of the decision trees to find a shorter as well as more accurate decision tree. Since these two criteria are in conflict, we need to find a decision tree with suitable parameters that can be a trade off between two criteria. Hence, we design two algorithms to build a decision tree with a given threshold of the number of vertices based on the bi-criteria optimiza tion technique. Then, we calculate the local and global misclassification rates for these trees. Our goal is to study the effect of changing the threshold for the bi-criteria optimization of the decision trees. We apply our algorithms to 13 decision tables from UCI Machine Learning Repository and recommend the suitable threshold that can give us more accurate decision trees with a reasonable number of vertices.</abstract><cop>Kuwait</cop><pub>Kuwait University, Academic Publication Council</pub><doi>10.48129/kjs.10725</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2307-4108
ispartof Kuwait journal of science, 2022-04, Vol.49 (2), p.1-14
issn 2307-4108
2307-4116
language eng
recordid cdi_crossref_primary_10_48129_kjs_10725
source Alma/SFX Local Collection
title A bi-criteria optimization model for adjusting the decision tree parameters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bi-criteria%20optimization%20model%20for%20adjusting%20the%20decision%20tree%20parameters&rft.jtitle=Kuwait%20journal%20of%20science&rft.au=Azad,%20Mohammad%20A.%20K.&rft.aucorp=Jouf%20University%20Department%20of%20Computer%20Science,%20College%20of%20Computer%20and%20Information%20Sciences%20Sakaka%2072441,%20Saudi%20Arabia&rft.date=2022-04-01&rft.volume=49&rft.issue=2&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=2307-4108&rft.eissn=2307-4116&rft_id=info:doi/10.48129/kjs.10725&rft_dat=%3Cemarefa_cross%3E1500275%3C/emarefa_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c290t-5eddf495ad703c012a23be276ef5e965787d8b42568f88c6d81c774f21dc5d3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true