Loading…

Exploring the performance-affecting factors of monocationic and dicationic phosphonium-based thermoresponsive ionic liquid draw solutes in forward osmosis

Because of easy recovery, thermoresponsive phosphonium-based ionic liquids (ILs) can be used as a potential draw solute in forward osmosis (FO). Its phase separation behaviors and water-drawing potential are two main factors affecting FO performance. In this study, these two factors were investigate...

Full description

Saved in:
Bibliographic Details
Published in:Desalination and water treatment 2020-10, Vol.200, p.1-7
Main Authors: Liu, Po-I, Wang, David C., Ho, Chia-Hua, Chen, Yi-Chun, Chung, Li-Ching, Liang, Teh-Ming, Chang, Min-Chao, Horng, Ren-Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Because of easy recovery, thermoresponsive phosphonium-based ionic liquids (ILs) can be used as a potential draw solute in forward osmosis (FO). Its phase separation behaviors and water-drawing potential are two main factors affecting FO performance. In this study, these two factors were investigated for the lower critical solution temperature (LCST) type mono-cationic and di-cationic phosphonium-based IL draw solutes with different anions, including p-toluenesulfonate (TSO), hydrogen maleate (Mal), and trimethylbenzenesulfonate (TMBS). In phase separation behaviors, the structure chemistry of cation/anion can affect the LCST cloud temperature point (Tcloud). High hydrophilicity of the anion leads to high LCST Tcloud of phosphonium-based IL aqueous solution. For the same anion, the LCST Tcloud of di-cationic phosphonium-based IL is lower than that of mono-cationic phosphonium-based IL. In water-drawing potential, it is related to the osmolality and the viscosity of IL aqueous solution. Mono-cationic phosphonium-based IL aqueous solution with high osmolality and low viscosity has high water-drawing potential and water flux in FO test. After FO process, diluted IL draw solution is phase separated into IL-rich layer and water-rich layer above LCST. Phosphonium-based IL with low osmolality can lead to low residual IL content in water-rich layer.
ISSN:1944-3986
DOI:10.5004/dwt.2020.25987