Loading…
Hydrogen Embrittlement and its Prevention in 7XXX Aluminum Alloys with High Zn Concentrations
7xxx aluminum alloys are representative high-strength aluminum alloys; however, mechanical property degradation due to hydrogen hinders further strengthening. We have previously reported that hydrogen embrittlement in 7xxx alloys originates from trapped hydrogen at the MgZn2 precipitate interface, p...
Saved in:
Published in: | Corrosion (Houston, Tex.) Tex.), 2023-08, Vol.79 (8), p.818-830 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 7xxx aluminum alloys are representative high-strength aluminum alloys; however, mechanical property degradation due to hydrogen hinders further strengthening. We have previously reported that hydrogen embrittlement in 7xxx alloys originates from trapped hydrogen at the MgZn2 precipitate interface, providing high hydrogen trapping energy. We propose the dispersion of Mn-based second-phase particles as a novel technique for preventing 7xxx aluminum alloy hydrogen embrittlement. In this study, the deformation and fracture behaviors of high hydrogen 7xxx alloys containing 0.0% Mn and 0.6% Mn are observed in situ using synchrotron radiation x-ray tomography. Although no significant differences appear between the two alloys regarding the initiation of quasicleavage cracks, the area fractions of final quasicleavage fractures are 16.5% and 1.0% for 0.0% Mn and 0.6% Mn alloys, respectively; this finding indicates that Mn addition reduces hydrogen-induced fractures. The obtained macroscopic hydrogen embrittlement is quantitatively analyzed based on hydrogen partitioning in alloys. Adding 0.6% Mn, generating second-phase particles with high hydrogen trapping abilities, significantly suppresses hydrogen-induced quasicleavage fracture. The results of an original hydrogen partitioning analysis show that the dispersion of Mn-based particles (Al12Mn3Si) with high hydrogen trapping abilities reduces the hydrogen concentration at the semicoherent MgZn2 interface and suppresses hydrogen embrittlement. |
---|---|
ISSN: | 0010-9312 1938-159X |
DOI: | 10.5006/4300 |