Loading…
A Novel Sub-Type Mean Estimator for Ranked Set Sampling with Dual Auxiliary Variables
This research introduces a novel sub-estimator designed to estimate the population mean under ranked set sampling, motivated by the new concept of a recently introduced sub-ratio estimator. The mathematical formulas of the proposed estimator’s mean square error and bias are presented and theoretical...
Saved in:
Published in: | Journal of New Theory 2023-09 (44), p.79-86 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1180-e100e1ff6204f0aab59b869dc043b1266414453aadad2102fbfe0e22fa98ea8d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c1180-e100e1ff6204f0aab59b869dc043b1266414453aadad2102fbfe0e22fa98ea8d3 |
container_end_page | 86 |
container_issue | 44 |
container_start_page | 79 |
container_title | Journal of New Theory |
container_volume | |
creator | KOÇYİĞİT, Eda Gizem |
description | This research introduces a novel sub-estimator designed to estimate the population mean under ranked set sampling, motivated by the new concept of a recently introduced sub-ratio estimator. The mathematical formulas of the proposed estimator’s mean square error and bias are presented and theoretically contrasted with an analogous estimator found in the existing best sub-estimator literature. In addition to the theoretical analysis, empirical evidence is provided to validate the superiority of the proposed estimator. This empirical validation is based on numerical computations using Monte Carlo simulations, encompassing synthetic and real data applications. The results underscore the effectiveness of the proposed estimator. Finally, this study discusses the need for further research. |
doi_str_mv | 10.53570/jnt.1346020 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_53570_jnt_1346020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_53570_jnt_1346020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1180-e100e1ff6204f0aab59b869dc043b1266414453aadad2102fbfe0e22fa98ea8d3</originalsourceid><addsrcrecordid>eNotkEFOwzAQRb0Aiap0xwF8AFLGjuMmy6gUqFRAIi3baJyMwZCmkZ0AvT0RdPH1dl9Pj7ErAfMkThZw89H2cxErDRLO2EQKlUVCgbxgsxCcAaW1XGitJmyX86fDFzW8GEy0PXbEHwlbvgq922N_8NyOe8H2k2peUM8L3HeNa9_4t-vf-e2ADc-HH9c49Ef-it6haShcsnOLTaDZiVO2u1ttlw_R5vl-vcw3USVEChEJABLWagnKAqJJMpPqrK5AxUbIUVAolcSINdZSgLTGEpCUFrOUMK3jKbv-_638IQRPtuz86O2PpYDyr0Q5lihPJeJfyU5TOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Novel Sub-Type Mean Estimator for Ranked Set Sampling with Dual Auxiliary Variables</title><source>EZB Electronic Journals Library</source><creator>KOÇYİĞİT, Eda Gizem</creator><creatorcontrib>KOÇYİĞİT, Eda Gizem</creatorcontrib><description>This research introduces a novel sub-estimator designed to estimate the population mean under ranked set sampling, motivated by the new concept of a recently introduced sub-ratio estimator. The mathematical formulas of the proposed estimator’s mean square error and bias are presented and theoretically contrasted with an analogous estimator found in the existing best sub-estimator literature. In addition to the theoretical analysis, empirical evidence is provided to validate the superiority of the proposed estimator. This empirical validation is based on numerical computations using Monte Carlo simulations, encompassing synthetic and real data applications. The results underscore the effectiveness of the proposed estimator. Finally, this study discusses the need for further research.</description><identifier>ISSN: 2149-1402</identifier><identifier>DOI: 10.53570/jnt.1346020</identifier><language>eng</language><ispartof>Journal of New Theory, 2023-09 (44), p.79-86</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1180-e100e1ff6204f0aab59b869dc043b1266414453aadad2102fbfe0e22fa98ea8d3</citedby><cites>FETCH-LOGICAL-c1180-e100e1ff6204f0aab59b869dc043b1266414453aadad2102fbfe0e22fa98ea8d3</cites><orcidid>0000-0002-0774-1376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>KOÇYİĞİT, Eda Gizem</creatorcontrib><title>A Novel Sub-Type Mean Estimator for Ranked Set Sampling with Dual Auxiliary Variables</title><title>Journal of New Theory</title><description>This research introduces a novel sub-estimator designed to estimate the population mean under ranked set sampling, motivated by the new concept of a recently introduced sub-ratio estimator. The mathematical formulas of the proposed estimator’s mean square error and bias are presented and theoretically contrasted with an analogous estimator found in the existing best sub-estimator literature. In addition to the theoretical analysis, empirical evidence is provided to validate the superiority of the proposed estimator. This empirical validation is based on numerical computations using Monte Carlo simulations, encompassing synthetic and real data applications. The results underscore the effectiveness of the proposed estimator. Finally, this study discusses the need for further research.</description><issn>2149-1402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkEFOwzAQRb0Aiap0xwF8AFLGjuMmy6gUqFRAIi3baJyMwZCmkZ0AvT0RdPH1dl9Pj7ErAfMkThZw89H2cxErDRLO2EQKlUVCgbxgsxCcAaW1XGitJmyX86fDFzW8GEy0PXbEHwlbvgq922N_8NyOe8H2k2peUM8L3HeNa9_4t-vf-e2ADc-HH9c49Ef-it6haShcsnOLTaDZiVO2u1ttlw_R5vl-vcw3USVEChEJABLWagnKAqJJMpPqrK5AxUbIUVAolcSINdZSgLTGEpCUFrOUMK3jKbv-_638IQRPtuz86O2PpYDyr0Q5lihPJeJfyU5TOA</recordid><startdate>20230930</startdate><enddate>20230930</enddate><creator>KOÇYİĞİT, Eda Gizem</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0774-1376</orcidid></search><sort><creationdate>20230930</creationdate><title>A Novel Sub-Type Mean Estimator for Ranked Set Sampling with Dual Auxiliary Variables</title><author>KOÇYİĞİT, Eda Gizem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1180-e100e1ff6204f0aab59b869dc043b1266414453aadad2102fbfe0e22fa98ea8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>KOÇYİĞİT, Eda Gizem</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of New Theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KOÇYİĞİT, Eda Gizem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Sub-Type Mean Estimator for Ranked Set Sampling with Dual Auxiliary Variables</atitle><jtitle>Journal of New Theory</jtitle><date>2023-09-30</date><risdate>2023</risdate><issue>44</issue><spage>79</spage><epage>86</epage><pages>79-86</pages><issn>2149-1402</issn><abstract>This research introduces a novel sub-estimator designed to estimate the population mean under ranked set sampling, motivated by the new concept of a recently introduced sub-ratio estimator. The mathematical formulas of the proposed estimator’s mean square error and bias are presented and theoretically contrasted with an analogous estimator found in the existing best sub-estimator literature. In addition to the theoretical analysis, empirical evidence is provided to validate the superiority of the proposed estimator. This empirical validation is based on numerical computations using Monte Carlo simulations, encompassing synthetic and real data applications. The results underscore the effectiveness of the proposed estimator. Finally, this study discusses the need for further research.</abstract><doi>10.53570/jnt.1346020</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0774-1376</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2149-1402 |
ispartof | Journal of New Theory, 2023-09 (44), p.79-86 |
issn | 2149-1402 |
language | eng |
recordid | cdi_crossref_primary_10_53570_jnt_1346020 |
source | EZB Electronic Journals Library |
title | A Novel Sub-Type Mean Estimator for Ranked Set Sampling with Dual Auxiliary Variables |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Sub-Type%20Mean%20Estimator%20for%20Ranked%20Set%20Sampling%20with%20Dual%20Auxiliary%20Variables&rft.jtitle=Journal%20of%20New%20Theory&rft.au=KO%C3%87Y%C4%B0%C4%9E%C4%B0T,%20Eda%20Gizem&rft.date=2023-09-30&rft.issue=44&rft.spage=79&rft.epage=86&rft.pages=79-86&rft.issn=2149-1402&rft_id=info:doi/10.53570/jnt.1346020&rft_dat=%3Ccrossref%3E10_53570_jnt_1346020%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1180-e100e1ff6204f0aab59b869dc043b1266414453aadad2102fbfe0e22fa98ea8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |