Loading…

A Novel Sub-Type Mean Estimator for Ranked Set Sampling with Dual Auxiliary Variables

This research introduces a novel sub-estimator designed to estimate the population mean under ranked set sampling, motivated by the new concept of a recently introduced sub-ratio estimator. The mathematical formulas of the proposed estimator’s mean square error and bias are presented and theoretical...

Full description

Saved in:
Bibliographic Details
Published in:Journal of New Theory 2023-09 (44), p.79-86
Main Author: KOÇYİĞİT, Eda Gizem
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1180-e100e1ff6204f0aab59b869dc043b1266414453aadad2102fbfe0e22fa98ea8d3
cites cdi_FETCH-LOGICAL-c1180-e100e1ff6204f0aab59b869dc043b1266414453aadad2102fbfe0e22fa98ea8d3
container_end_page 86
container_issue 44
container_start_page 79
container_title Journal of New Theory
container_volume
creator KOÇYİĞİT, Eda Gizem
description This research introduces a novel sub-estimator designed to estimate the population mean under ranked set sampling, motivated by the new concept of a recently introduced sub-ratio estimator. The mathematical formulas of the proposed estimator’s mean square error and bias are presented and theoretically contrasted with an analogous estimator found in the existing best sub-estimator literature. In addition to the theoretical analysis, empirical evidence is provided to validate the superiority of the proposed estimator. This empirical validation is based on numerical computations using Monte Carlo simulations, encompassing synthetic and real data applications. The results underscore the effectiveness of the proposed estimator. Finally, this study discusses the need for further research.
doi_str_mv 10.53570/jnt.1346020
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_53570_jnt_1346020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_53570_jnt_1346020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1180-e100e1ff6204f0aab59b869dc043b1266414453aadad2102fbfe0e22fa98ea8d3</originalsourceid><addsrcrecordid>eNotkEFOwzAQRb0Aiap0xwF8AFLGjuMmy6gUqFRAIi3baJyMwZCmkZ0AvT0RdPH1dl9Pj7ErAfMkThZw89H2cxErDRLO2EQKlUVCgbxgsxCcAaW1XGitJmyX86fDFzW8GEy0PXbEHwlbvgq922N_8NyOe8H2k2peUM8L3HeNa9_4t-vf-e2ADc-HH9c49Ef-it6haShcsnOLTaDZiVO2u1ttlw_R5vl-vcw3USVEChEJABLWagnKAqJJMpPqrK5AxUbIUVAolcSINdZSgLTGEpCUFrOUMK3jKbv-_638IQRPtuz86O2PpYDyr0Q5lihPJeJfyU5TOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Novel Sub-Type Mean Estimator for Ranked Set Sampling with Dual Auxiliary Variables</title><source>EZB Electronic Journals Library</source><creator>KOÇYİĞİT, Eda Gizem</creator><creatorcontrib>KOÇYİĞİT, Eda Gizem</creatorcontrib><description>This research introduces a novel sub-estimator designed to estimate the population mean under ranked set sampling, motivated by the new concept of a recently introduced sub-ratio estimator. The mathematical formulas of the proposed estimator’s mean square error and bias are presented and theoretically contrasted with an analogous estimator found in the existing best sub-estimator literature. In addition to the theoretical analysis, empirical evidence is provided to validate the superiority of the proposed estimator. This empirical validation is based on numerical computations using Monte Carlo simulations, encompassing synthetic and real data applications. The results underscore the effectiveness of the proposed estimator. Finally, this study discusses the need for further research.</description><identifier>ISSN: 2149-1402</identifier><identifier>DOI: 10.53570/jnt.1346020</identifier><language>eng</language><ispartof>Journal of New Theory, 2023-09 (44), p.79-86</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1180-e100e1ff6204f0aab59b869dc043b1266414453aadad2102fbfe0e22fa98ea8d3</citedby><cites>FETCH-LOGICAL-c1180-e100e1ff6204f0aab59b869dc043b1266414453aadad2102fbfe0e22fa98ea8d3</cites><orcidid>0000-0002-0774-1376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>KOÇYİĞİT, Eda Gizem</creatorcontrib><title>A Novel Sub-Type Mean Estimator for Ranked Set Sampling with Dual Auxiliary Variables</title><title>Journal of New Theory</title><description>This research introduces a novel sub-estimator designed to estimate the population mean under ranked set sampling, motivated by the new concept of a recently introduced sub-ratio estimator. The mathematical formulas of the proposed estimator’s mean square error and bias are presented and theoretically contrasted with an analogous estimator found in the existing best sub-estimator literature. In addition to the theoretical analysis, empirical evidence is provided to validate the superiority of the proposed estimator. This empirical validation is based on numerical computations using Monte Carlo simulations, encompassing synthetic and real data applications. The results underscore the effectiveness of the proposed estimator. Finally, this study discusses the need for further research.</description><issn>2149-1402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkEFOwzAQRb0Aiap0xwF8AFLGjuMmy6gUqFRAIi3baJyMwZCmkZ0AvT0RdPH1dl9Pj7ErAfMkThZw89H2cxErDRLO2EQKlUVCgbxgsxCcAaW1XGitJmyX86fDFzW8GEy0PXbEHwlbvgq922N_8NyOe8H2k2peUM8L3HeNa9_4t-vf-e2ADc-HH9c49Ef-it6haShcsnOLTaDZiVO2u1ttlw_R5vl-vcw3USVEChEJABLWagnKAqJJMpPqrK5AxUbIUVAolcSINdZSgLTGEpCUFrOUMK3jKbv-_638IQRPtuz86O2PpYDyr0Q5lihPJeJfyU5TOA</recordid><startdate>20230930</startdate><enddate>20230930</enddate><creator>KOÇYİĞİT, Eda Gizem</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0774-1376</orcidid></search><sort><creationdate>20230930</creationdate><title>A Novel Sub-Type Mean Estimator for Ranked Set Sampling with Dual Auxiliary Variables</title><author>KOÇYİĞİT, Eda Gizem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1180-e100e1ff6204f0aab59b869dc043b1266414453aadad2102fbfe0e22fa98ea8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>KOÇYİĞİT, Eda Gizem</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of New Theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KOÇYİĞİT, Eda Gizem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Sub-Type Mean Estimator for Ranked Set Sampling with Dual Auxiliary Variables</atitle><jtitle>Journal of New Theory</jtitle><date>2023-09-30</date><risdate>2023</risdate><issue>44</issue><spage>79</spage><epage>86</epage><pages>79-86</pages><issn>2149-1402</issn><abstract>This research introduces a novel sub-estimator designed to estimate the population mean under ranked set sampling, motivated by the new concept of a recently introduced sub-ratio estimator. The mathematical formulas of the proposed estimator’s mean square error and bias are presented and theoretically contrasted with an analogous estimator found in the existing best sub-estimator literature. In addition to the theoretical analysis, empirical evidence is provided to validate the superiority of the proposed estimator. This empirical validation is based on numerical computations using Monte Carlo simulations, encompassing synthetic and real data applications. The results underscore the effectiveness of the proposed estimator. Finally, this study discusses the need for further research.</abstract><doi>10.53570/jnt.1346020</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0774-1376</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2149-1402
ispartof Journal of New Theory, 2023-09 (44), p.79-86
issn 2149-1402
language eng
recordid cdi_crossref_primary_10_53570_jnt_1346020
source EZB Electronic Journals Library
title A Novel Sub-Type Mean Estimator for Ranked Set Sampling with Dual Auxiliary Variables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Sub-Type%20Mean%20Estimator%20for%20Ranked%20Set%20Sampling%20with%20Dual%20Auxiliary%20Variables&rft.jtitle=Journal%20of%20New%20Theory&rft.au=KO%C3%87Y%C4%B0%C4%9E%C4%B0T,%20Eda%20Gizem&rft.date=2023-09-30&rft.issue=44&rft.spage=79&rft.epage=86&rft.pages=79-86&rft.issn=2149-1402&rft_id=info:doi/10.53570/jnt.1346020&rft_dat=%3Ccrossref%3E10_53570_jnt_1346020%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1180-e100e1ff6204f0aab59b869dc043b1266414453aadad2102fbfe0e22fa98ea8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true