Loading…
A trace theorem for Besov functions in spaces of homogeneous type
The aim of this paper is to prove a trace theorem for Besov functions in the metric setting, generalizing a known result from A. Jonsson and H. Wallin in the Euclidean case. We show that the trace of a Besov space defined in a ‘big set’ X is another Besov space defined in the ‘small set’ F ⊂ X. The...
Saved in:
Published in: | Publicacions matemàtiques 2018, Vol.62 (1), p.185-211 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-36dc6c32c690c8dd402f2b5e4e3509c364d7ba932625f519c3f7a0a5901a11d23 |
---|---|
cites | |
container_end_page | 211 |
container_issue | 1 |
container_start_page | 185 |
container_title | Publicacions matemàtiques |
container_volume | 62 |
creator | Marcos, Miguel Andrés |
description | The aim of this paper is to prove a trace theorem for Besov functions in the metric setting, generalizing a known result from A. Jonsson and H. Wallin in the Euclidean case. We show that the trace of a Besov space defined in a ‘big set’ X is another Besov space defined in the ‘small set’ F ⊂ X. The proof is divided in three parts. First we see that Besov functions in F are restrictions of functions of the same type (but greater regularity) in X, that is we prove an extension theorem and mention examples where this theorem holds. Next, as an auxiliary result that can also be interesting on its own, we show that the interpolation between certain potential spaces gives a Besov space. Finally, to obtain that Besov functions in X can in fact be restricted to F, a restriction theorem, we first prove that this result holdsfor functions in the potential space, and then by the interpolation result previously shown, it must hold in the Besov case. For the interpolation and restriction theorems, we make additional assumptions on the spaces X and F, and on the order of regularity of the functions involved. We include an interesting example of our trace theorem, not covered by the classical one. |
doi_str_mv | 10.5565/PUBLMAT6211810 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5565_PUBLMAT6211810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26398383</jstor_id><sourcerecordid>26398383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-36dc6c32c690c8dd402f2b5e4e3509c364d7ba932625f519c3f7a0a5901a11d23</originalsourceid><addsrcrecordid>eNpVkEFLAzEQhYMoWKtXb0J-gFuTTJJujttiVajooT2HNJvYLe2mJKnQf2-kRfA0j5n3HsOH0D0lIyGkePpcTubvzUIySmtKLtCAEcorDoJcogFhRVOu4BrdpLQhhNU14QPUNDhHYx3Oaxei22EfIp64FL6xP_Q2d6FPuOtx2hdTwsHjddiFL9e7cEg4H_fuFl15s03u7jyHaDl7Xkxfq_nHy9u0mVcWoM4VyNZKC8xKRWzdtpwwz1bCcVceVBYkb8cro4BJJrygZePHhhihCDWUtgyGaHTqtTGkFJ3X-9jtTDxqSvQvAP0fQAk8nAKblEP8czMJqoYayv3xXJgOVhcIQQfTnYQ1WZuYO7t1GphSwOEHOG5nNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A trace theorem for Besov functions in spaces of homogeneous type</title><source>JSTOR Archival Journals</source><creator>Marcos, Miguel Andrés</creator><creatorcontrib>Marcos, Miguel Andrés</creatorcontrib><description>The aim of this paper is to prove a trace theorem for Besov functions in the metric setting, generalizing a known result from A. Jonsson and H. Wallin in the Euclidean case. We show that the trace of a Besov space defined in a ‘big set’ X is another Besov space defined in the ‘small set’ F ⊂ X. The proof is divided in three parts. First we see that Besov functions in F are restrictions of functions of the same type (but greater regularity) in X, that is we prove an extension theorem and mention examples where this theorem holds. Next, as an auxiliary result that can also be interesting on its own, we show that the interpolation between certain potential spaces gives a Besov space. Finally, to obtain that Besov functions in X can in fact be restricted to F, a restriction theorem, we first prove that this result holdsfor functions in the potential space, and then by the interpolation result previously shown, it must hold in the Besov case. For the interpolation and restriction theorems, we make additional assumptions on the spaces X and F, and on the order of regularity of the functions involved. We include an interesting example of our trace theorem, not covered by the classical one.</description><identifier>ISSN: 0214-1493</identifier><identifier>EISSN: 2014-4350</identifier><identifier>DOI: 10.5565/PUBLMAT6211810</identifier><language>eng</language><publisher>Universitat Autònoma de Barcelona</publisher><ispartof>Publicacions matemàtiques, 2018, Vol.62 (1), p.185-211</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-36dc6c32c690c8dd402f2b5e4e3509c364d7ba932625f519c3f7a0a5901a11d23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26398383$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26398383$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Marcos, Miguel Andrés</creatorcontrib><title>A trace theorem for Besov functions in spaces of homogeneous type</title><title>Publicacions matemàtiques</title><description>The aim of this paper is to prove a trace theorem for Besov functions in the metric setting, generalizing a known result from A. Jonsson and H. Wallin in the Euclidean case. We show that the trace of a Besov space defined in a ‘big set’ X is another Besov space defined in the ‘small set’ F ⊂ X. The proof is divided in three parts. First we see that Besov functions in F are restrictions of functions of the same type (but greater regularity) in X, that is we prove an extension theorem and mention examples where this theorem holds. Next, as an auxiliary result that can also be interesting on its own, we show that the interpolation between certain potential spaces gives a Besov space. Finally, to obtain that Besov functions in X can in fact be restricted to F, a restriction theorem, we first prove that this result holdsfor functions in the potential space, and then by the interpolation result previously shown, it must hold in the Besov case. For the interpolation and restriction theorems, we make additional assumptions on the spaces X and F, and on the order of regularity of the functions involved. We include an interesting example of our trace theorem, not covered by the classical one.</description><issn>0214-1493</issn><issn>2014-4350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkEFLAzEQhYMoWKtXb0J-gFuTTJJujttiVajooT2HNJvYLe2mJKnQf2-kRfA0j5n3HsOH0D0lIyGkePpcTubvzUIySmtKLtCAEcorDoJcogFhRVOu4BrdpLQhhNU14QPUNDhHYx3Oaxei22EfIp64FL6xP_Q2d6FPuOtx2hdTwsHjddiFL9e7cEg4H_fuFl15s03u7jyHaDl7Xkxfq_nHy9u0mVcWoM4VyNZKC8xKRWzdtpwwz1bCcVceVBYkb8cro4BJJrygZePHhhihCDWUtgyGaHTqtTGkFJ3X-9jtTDxqSvQvAP0fQAk8nAKblEP8czMJqoYayv3xXJgOVhcIQQfTnYQ1WZuYO7t1GphSwOEHOG5nNw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Marcos, Miguel Andrés</creator><general>Universitat Autònoma de Barcelona</general><scope>2VB</scope><scope>AALZO</scope><scope>AFIUA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>A trace theorem for Besov functions in spaces of homogeneous type</title><author>Marcos, Miguel Andrés</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-36dc6c32c690c8dd402f2b5e4e3509c364d7ba932625f519c3f7a0a5901a11d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcos, Miguel Andrés</creatorcontrib><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>Revistes Catalanes amb Accés Obert (RACO) (Full Text)</collection><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>CrossRef</collection><jtitle>Publicacions matemàtiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcos, Miguel Andrés</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A trace theorem for Besov functions in spaces of homogeneous type</atitle><jtitle>Publicacions matemàtiques</jtitle><date>2018</date><risdate>2018</risdate><volume>62</volume><issue>1</issue><spage>185</spage><epage>211</epage><pages>185-211</pages><issn>0214-1493</issn><eissn>2014-4350</eissn><abstract>The aim of this paper is to prove a trace theorem for Besov functions in the metric setting, generalizing a known result from A. Jonsson and H. Wallin in the Euclidean case. We show that the trace of a Besov space defined in a ‘big set’ X is another Besov space defined in the ‘small set’ F ⊂ X. The proof is divided in three parts. First we see that Besov functions in F are restrictions of functions of the same type (but greater regularity) in X, that is we prove an extension theorem and mention examples where this theorem holds. Next, as an auxiliary result that can also be interesting on its own, we show that the interpolation between certain potential spaces gives a Besov space. Finally, to obtain that Besov functions in X can in fact be restricted to F, a restriction theorem, we first prove that this result holdsfor functions in the potential space, and then by the interpolation result previously shown, it must hold in the Besov case. For the interpolation and restriction theorems, we make additional assumptions on the spaces X and F, and on the order of regularity of the functions involved. We include an interesting example of our trace theorem, not covered by the classical one.</abstract><pub>Universitat Autònoma de Barcelona</pub><doi>10.5565/PUBLMAT6211810</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0214-1493 |
ispartof | Publicacions matemàtiques, 2018, Vol.62 (1), p.185-211 |
issn | 0214-1493 2014-4350 |
language | eng |
recordid | cdi_crossref_primary_10_5565_PUBLMAT6211810 |
source | JSTOR Archival Journals |
title | A trace theorem for Besov functions in spaces of homogeneous type |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20trace%20theorem%20for%20Besov%20functions%20in%20spaces%20of%20homogeneous%20type&rft.jtitle=Publicacions%20matem%C3%A0tiques&rft.au=Marcos,%20Miguel%20Andr%C3%A9s&rft.date=2018&rft.volume=62&rft.issue=1&rft.spage=185&rft.epage=211&rft.pages=185-211&rft.issn=0214-1493&rft.eissn=2014-4350&rft_id=info:doi/10.5565/PUBLMAT6211810&rft_dat=%3Cjstor_cross%3E26398383%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-36dc6c32c690c8dd402f2b5e4e3509c364d7ba932625f519c3f7a0a5901a11d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26398383&rfr_iscdi=true |