Loading…

A trace theorem for Besov functions in spaces of homogeneous type

The aim of this paper is to prove a trace theorem for Besov functions in the metric setting, generalizing a known result from A. Jonsson and H. Wallin in the Euclidean case. We show that the trace of a Besov space defined in a ‘big set’ X is another Besov space defined in the ‘small set’ F ⊂ X. The...

Full description

Saved in:
Bibliographic Details
Published in:Publicacions matemàtiques 2018, Vol.62 (1), p.185-211
Main Author: Marcos, Miguel Andrés
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-36dc6c32c690c8dd402f2b5e4e3509c364d7ba932625f519c3f7a0a5901a11d23
cites
container_end_page 211
container_issue 1
container_start_page 185
container_title Publicacions matemàtiques
container_volume 62
creator Marcos, Miguel Andrés
description The aim of this paper is to prove a trace theorem for Besov functions in the metric setting, generalizing a known result from A. Jonsson and H. Wallin in the Euclidean case. We show that the trace of a Besov space defined in a ‘big set’ X is another Besov space defined in the ‘small set’ F ⊂ X. The proof is divided in three parts. First we see that Besov functions in F are restrictions of functions of the same type (but greater regularity) in X, that is we prove an extension theorem and mention examples where this theorem holds. Next, as an auxiliary result that can also be interesting on its own, we show that the interpolation between certain potential spaces gives a Besov space. Finally, to obtain that Besov functions in X can in fact be restricted to F, a restriction theorem, we first prove that this result holdsfor functions in the potential space, and then by the interpolation result previously shown, it must hold in the Besov case. For the interpolation and restriction theorems, we make additional assumptions on the spaces X and F, and on the order of regularity of the functions involved. We include an interesting example of our trace theorem, not covered by the classical one.
doi_str_mv 10.5565/PUBLMAT6211810
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5565_PUBLMAT6211810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26398383</jstor_id><sourcerecordid>26398383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-36dc6c32c690c8dd402f2b5e4e3509c364d7ba932625f519c3f7a0a5901a11d23</originalsourceid><addsrcrecordid>eNpVkEFLAzEQhYMoWKtXb0J-gFuTTJJujttiVajooT2HNJvYLe2mJKnQf2-kRfA0j5n3HsOH0D0lIyGkePpcTubvzUIySmtKLtCAEcorDoJcogFhRVOu4BrdpLQhhNU14QPUNDhHYx3Oaxei22EfIp64FL6xP_Q2d6FPuOtx2hdTwsHjddiFL9e7cEg4H_fuFl15s03u7jyHaDl7Xkxfq_nHy9u0mVcWoM4VyNZKC8xKRWzdtpwwz1bCcVceVBYkb8cro4BJJrygZePHhhihCDWUtgyGaHTqtTGkFJ3X-9jtTDxqSvQvAP0fQAk8nAKblEP8czMJqoYayv3xXJgOVhcIQQfTnYQ1WZuYO7t1GphSwOEHOG5nNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A trace theorem for Besov functions in spaces of homogeneous type</title><source>JSTOR Archival Journals</source><creator>Marcos, Miguel Andrés</creator><creatorcontrib>Marcos, Miguel Andrés</creatorcontrib><description>The aim of this paper is to prove a trace theorem for Besov functions in the metric setting, generalizing a known result from A. Jonsson and H. Wallin in the Euclidean case. We show that the trace of a Besov space defined in a ‘big set’ X is another Besov space defined in the ‘small set’ F ⊂ X. The proof is divided in three parts. First we see that Besov functions in F are restrictions of functions of the same type (but greater regularity) in X, that is we prove an extension theorem and mention examples where this theorem holds. Next, as an auxiliary result that can also be interesting on its own, we show that the interpolation between certain potential spaces gives a Besov space. Finally, to obtain that Besov functions in X can in fact be restricted to F, a restriction theorem, we first prove that this result holdsfor functions in the potential space, and then by the interpolation result previously shown, it must hold in the Besov case. For the interpolation and restriction theorems, we make additional assumptions on the spaces X and F, and on the order of regularity of the functions involved. We include an interesting example of our trace theorem, not covered by the classical one.</description><identifier>ISSN: 0214-1493</identifier><identifier>EISSN: 2014-4350</identifier><identifier>DOI: 10.5565/PUBLMAT6211810</identifier><language>eng</language><publisher>Universitat Autònoma de Barcelona</publisher><ispartof>Publicacions matemàtiques, 2018, Vol.62 (1), p.185-211</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-36dc6c32c690c8dd402f2b5e4e3509c364d7ba932625f519c3f7a0a5901a11d23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26398383$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26398383$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Marcos, Miguel Andrés</creatorcontrib><title>A trace theorem for Besov functions in spaces of homogeneous type</title><title>Publicacions matemàtiques</title><description>The aim of this paper is to prove a trace theorem for Besov functions in the metric setting, generalizing a known result from A. Jonsson and H. Wallin in the Euclidean case. We show that the trace of a Besov space defined in a ‘big set’ X is another Besov space defined in the ‘small set’ F ⊂ X. The proof is divided in three parts. First we see that Besov functions in F are restrictions of functions of the same type (but greater regularity) in X, that is we prove an extension theorem and mention examples where this theorem holds. Next, as an auxiliary result that can also be interesting on its own, we show that the interpolation between certain potential spaces gives a Besov space. Finally, to obtain that Besov functions in X can in fact be restricted to F, a restriction theorem, we first prove that this result holdsfor functions in the potential space, and then by the interpolation result previously shown, it must hold in the Besov case. For the interpolation and restriction theorems, we make additional assumptions on the spaces X and F, and on the order of regularity of the functions involved. We include an interesting example of our trace theorem, not covered by the classical one.</description><issn>0214-1493</issn><issn>2014-4350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkEFLAzEQhYMoWKtXb0J-gFuTTJJujttiVajooT2HNJvYLe2mJKnQf2-kRfA0j5n3HsOH0D0lIyGkePpcTubvzUIySmtKLtCAEcorDoJcogFhRVOu4BrdpLQhhNU14QPUNDhHYx3Oaxei22EfIp64FL6xP_Q2d6FPuOtx2hdTwsHjddiFL9e7cEg4H_fuFl15s03u7jyHaDl7Xkxfq_nHy9u0mVcWoM4VyNZKC8xKRWzdtpwwz1bCcVceVBYkb8cro4BJJrygZePHhhihCDWUtgyGaHTqtTGkFJ3X-9jtTDxqSvQvAP0fQAk8nAKblEP8czMJqoYayv3xXJgOVhcIQQfTnYQ1WZuYO7t1GphSwOEHOG5nNw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Marcos, Miguel Andrés</creator><general>Universitat Autònoma de Barcelona</general><scope>2VB</scope><scope>AALZO</scope><scope>AFIUA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>A trace theorem for Besov functions in spaces of homogeneous type</title><author>Marcos, Miguel Andrés</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-36dc6c32c690c8dd402f2b5e4e3509c364d7ba932625f519c3f7a0a5901a11d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcos, Miguel Andrés</creatorcontrib><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>Revistes Catalanes amb Accés Obert (RACO) (Full Text)</collection><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>CrossRef</collection><jtitle>Publicacions matemàtiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcos, Miguel Andrés</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A trace theorem for Besov functions in spaces of homogeneous type</atitle><jtitle>Publicacions matemàtiques</jtitle><date>2018</date><risdate>2018</risdate><volume>62</volume><issue>1</issue><spage>185</spage><epage>211</epage><pages>185-211</pages><issn>0214-1493</issn><eissn>2014-4350</eissn><abstract>The aim of this paper is to prove a trace theorem for Besov functions in the metric setting, generalizing a known result from A. Jonsson and H. Wallin in the Euclidean case. We show that the trace of a Besov space defined in a ‘big set’ X is another Besov space defined in the ‘small set’ F ⊂ X. The proof is divided in three parts. First we see that Besov functions in F are restrictions of functions of the same type (but greater regularity) in X, that is we prove an extension theorem and mention examples where this theorem holds. Next, as an auxiliary result that can also be interesting on its own, we show that the interpolation between certain potential spaces gives a Besov space. Finally, to obtain that Besov functions in X can in fact be restricted to F, a restriction theorem, we first prove that this result holdsfor functions in the potential space, and then by the interpolation result previously shown, it must hold in the Besov case. For the interpolation and restriction theorems, we make additional assumptions on the spaces X and F, and on the order of regularity of the functions involved. We include an interesting example of our trace theorem, not covered by the classical one.</abstract><pub>Universitat Autònoma de Barcelona</pub><doi>10.5565/PUBLMAT6211810</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0214-1493
ispartof Publicacions matemàtiques, 2018, Vol.62 (1), p.185-211
issn 0214-1493
2014-4350
language eng
recordid cdi_crossref_primary_10_5565_PUBLMAT6211810
source JSTOR Archival Journals
title A trace theorem for Besov functions in spaces of homogeneous type
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20trace%20theorem%20for%20Besov%20functions%20in%20spaces%20of%20homogeneous%20type&rft.jtitle=Publicacions%20matem%C3%A0tiques&rft.au=Marcos,%20Miguel%20Andr%C3%A9s&rft.date=2018&rft.volume=62&rft.issue=1&rft.spage=185&rft.epage=211&rft.pages=185-211&rft.issn=0214-1493&rft.eissn=2014-4350&rft_id=info:doi/10.5565/PUBLMAT6211810&rft_dat=%3Cjstor_cross%3E26398383%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-36dc6c32c690c8dd402f2b5e4e3509c364d7ba932625f519c3f7a0a5901a11d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26398383&rfr_iscdi=true