Loading…

The boundedness of multilinear Calderón-Zygmund operators on weighted and variable Hardy spaces

We establish the boundedness of the multilinear Calderon{Zygmund operators from a product of weighted Hardy spaces into a weighted Hardy or Lebesgue space. Our results generalize to the weighted setting results obtained by Grafakos and Kalton [18] and recent work by the third author, Grafakos, Nakam...

Full description

Saved in:
Bibliographic Details
Published in:Publicacions matemàtiques 2019, Vol.63 (2), p.679-713
Main Authors: Cruz-Uribe, David, Moen, Kabe, Van Nguyen, Hanh
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-52f1a08f1597a89d9a6a16aeeb6c37db34bccb75e8c298fd5df95c55303ef2593
cites
container_end_page 713
container_issue 2
container_start_page 679
container_title Publicacions matemàtiques
container_volume 63
creator Cruz-Uribe, David
Moen, Kabe
Van Nguyen, Hanh
description We establish the boundedness of the multilinear Calderon{Zygmund operators from a product of weighted Hardy spaces into a weighted Hardy or Lebesgue space. Our results generalize to the weighted setting results obtained by Grafakos and Kalton [18] and recent work by the third author, Grafakos, Nakamura, and Sawano [20]. As part of our proof we provide a finite atomic decomposition theorem for weighted Hardy spaces, which is interesting in its own right. As a consequence of our weighted results, we prove the corresponding estimates on variable Hardy spaces. Our main tool is a multilinear extrapolation theorem that generalizes a result of the first author and Naibo [10].
doi_str_mv 10.5565/PUBLMAT6321908
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5565_PUBLMAT6321908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26860753</jstor_id><sourcerecordid>26860753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-52f1a08f1597a89d9a6a16aeeb6c37db34bccb75e8c298fd5df95c55303ef2593</originalsourceid><addsrcrecordid>eNpVkM1Kw0AUhQdRsFa37oR5AFPnJ5PMLLWoFSq6aDdu4s3MnTYlTcpMqvS5fARfzEiL4OoeON85cA8hl5yNlMrUzev8bvp8O8uk4IbpIzIQjKdJKhU7JgMmes1TI0_JWYwrxoTWLB2Q99kSadluG4euwRhp6-l6W3dVXTUIgY6hdhi-v5rkbbdY9xhtNxiga0OPNvQTq8WyQ0ehdz4gVFDWSCcQ3I7GDViM5-TEQx3x4nCHZP5wPxtPkunL49P4dppYKXWXKOE5MO25Mjlo4wxkwDNALDMrc1fKtLS2zBVqK4z2TjlvlFVKMoleKCOHZLTvtaGNMaAvNqFaQ9gVnBW_-xT_9-kDV_vAKvbf_NEi0xnLlez960Nh3NoigG2LFqq9sNAVELrK1lhIpY1K5Q_4snUn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The boundedness of multilinear Calderón-Zygmund operators on weighted and variable Hardy spaces</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Cruz-Uribe, David ; Moen, Kabe ; Van Nguyen, Hanh</creator><creatorcontrib>Cruz-Uribe, David ; Moen, Kabe ; Van Nguyen, Hanh</creatorcontrib><description>We establish the boundedness of the multilinear Calderon{Zygmund operators from a product of weighted Hardy spaces into a weighted Hardy or Lebesgue space. Our results generalize to the weighted setting results obtained by Grafakos and Kalton [18] and recent work by the third author, Grafakos, Nakamura, and Sawano [20]. As part of our proof we provide a finite atomic decomposition theorem for weighted Hardy spaces, which is interesting in its own right. As a consequence of our weighted results, we prove the corresponding estimates on variable Hardy spaces. Our main tool is a multilinear extrapolation theorem that generalizes a result of the first author and Naibo [10].</description><identifier>ISSN: 0214-1493</identifier><identifier>EISSN: 2014-4350</identifier><identifier>DOI: 10.5565/PUBLMAT6321908</identifier><language>eng</language><publisher>Universitat Autònoma de Barcelona</publisher><ispartof>Publicacions matemàtiques, 2019, Vol.63 (2), p.679-713</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-52f1a08f1597a89d9a6a16aeeb6c37db34bccb75e8c298fd5df95c55303ef2593</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26860753$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26860753$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Cruz-Uribe, David</creatorcontrib><creatorcontrib>Moen, Kabe</creatorcontrib><creatorcontrib>Van Nguyen, Hanh</creatorcontrib><title>The boundedness of multilinear Calderón-Zygmund operators on weighted and variable Hardy spaces</title><title>Publicacions matemàtiques</title><description>We establish the boundedness of the multilinear Calderon{Zygmund operators from a product of weighted Hardy spaces into a weighted Hardy or Lebesgue space. Our results generalize to the weighted setting results obtained by Grafakos and Kalton [18] and recent work by the third author, Grafakos, Nakamura, and Sawano [20]. As part of our proof we provide a finite atomic decomposition theorem for weighted Hardy spaces, which is interesting in its own right. As a consequence of our weighted results, we prove the corresponding estimates on variable Hardy spaces. Our main tool is a multilinear extrapolation theorem that generalizes a result of the first author and Naibo [10].</description><issn>0214-1493</issn><issn>2014-4350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkM1Kw0AUhQdRsFa37oR5AFPnJ5PMLLWoFSq6aDdu4s3MnTYlTcpMqvS5fARfzEiL4OoeON85cA8hl5yNlMrUzev8bvp8O8uk4IbpIzIQjKdJKhU7JgMmes1TI0_JWYwrxoTWLB2Q99kSadluG4euwRhp6-l6W3dVXTUIgY6hdhi-v5rkbbdY9xhtNxiga0OPNvQTq8WyQ0ehdz4gVFDWSCcQ3I7GDViM5-TEQx3x4nCHZP5wPxtPkunL49P4dppYKXWXKOE5MO25Mjlo4wxkwDNALDMrc1fKtLS2zBVqK4z2TjlvlFVKMoleKCOHZLTvtaGNMaAvNqFaQ9gVnBW_-xT_9-kDV_vAKvbf_NEi0xnLlez960Nh3NoigG2LFqq9sNAVELrK1lhIpY1K5Q_4snUn</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Cruz-Uribe, David</creator><creator>Moen, Kabe</creator><creator>Van Nguyen, Hanh</creator><general>Universitat Autònoma de Barcelona</general><scope>2VB</scope><scope>AALZO</scope><scope>AFIUA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2019</creationdate><title>The boundedness of multilinear Calderón-Zygmund operators on weighted and variable Hardy spaces</title><author>Cruz-Uribe, David ; Moen, Kabe ; Van Nguyen, Hanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-52f1a08f1597a89d9a6a16aeeb6c37db34bccb75e8c298fd5df95c55303ef2593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruz-Uribe, David</creatorcontrib><creatorcontrib>Moen, Kabe</creatorcontrib><creatorcontrib>Van Nguyen, Hanh</creatorcontrib><collection>Revistes Catalanes amb Accés Obert (RACO)【Freely Accessible】</collection><collection>Revistes Catalanes amb Accés Obert (RACO) (Full Text)</collection><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>CrossRef</collection><jtitle>Publicacions matemàtiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruz-Uribe, David</au><au>Moen, Kabe</au><au>Van Nguyen, Hanh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The boundedness of multilinear Calderón-Zygmund operators on weighted and variable Hardy spaces</atitle><jtitle>Publicacions matemàtiques</jtitle><date>2019</date><risdate>2019</risdate><volume>63</volume><issue>2</issue><spage>679</spage><epage>713</epage><pages>679-713</pages><issn>0214-1493</issn><eissn>2014-4350</eissn><abstract>We establish the boundedness of the multilinear Calderon{Zygmund operators from a product of weighted Hardy spaces into a weighted Hardy or Lebesgue space. Our results generalize to the weighted setting results obtained by Grafakos and Kalton [18] and recent work by the third author, Grafakos, Nakamura, and Sawano [20]. As part of our proof we provide a finite atomic decomposition theorem for weighted Hardy spaces, which is interesting in its own right. As a consequence of our weighted results, we prove the corresponding estimates on variable Hardy spaces. Our main tool is a multilinear extrapolation theorem that generalizes a result of the first author and Naibo [10].</abstract><pub>Universitat Autònoma de Barcelona</pub><doi>10.5565/PUBLMAT6321908</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0214-1493
ispartof Publicacions matemàtiques, 2019, Vol.63 (2), p.679-713
issn 0214-1493
2014-4350
language eng
recordid cdi_crossref_primary_10_5565_PUBLMAT6321908
source JSTOR Archival Journals and Primary Sources Collection
title The boundedness of multilinear Calderón-Zygmund operators on weighted and variable Hardy spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A54%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20boundedness%20of%20multilinear%20Calder%C3%B3n-Zygmund%20operators%20on%20weighted%20and%20variable%20Hardy%20spaces&rft.jtitle=Publicacions%20matem%C3%A0tiques&rft.au=Cruz-Uribe,%20David&rft.date=2019&rft.volume=63&rft.issue=2&rft.spage=679&rft.epage=713&rft.pages=679-713&rft.issn=0214-1493&rft.eissn=2014-4350&rft_id=info:doi/10.5565/PUBLMAT6321908&rft_dat=%3Cjstor_cross%3E26860753%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-52f1a08f1597a89d9a6a16aeeb6c37db34bccb75e8c298fd5df95c55303ef2593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26860753&rfr_iscdi=true