Loading…

What Makes a Theory of Infinitesimals Useful? A View by Klein and Fraenkel

Saved in:
Bibliographic Details
Published in:Journal of humanistic mathematics 2018-01, Vol.8 (1), p.108-119
Main Authors: Kanovei, Vladimir, Katz, Karin, Katz, Mikhail, Mormann, Thomas
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c221t-b86adc058965e0d27c1452fa37367c8a2aa7c1c6a94f08756effd227431d07723
cites
container_end_page 119
container_issue 1
container_start_page 108
container_title Journal of humanistic mathematics
container_volume 8
creator Kanovei, Vladimir
Katz, Karin
Katz, Mikhail
Mormann, Thomas
description
doi_str_mv 10.5642/jhummath.201801.07
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_5642_jhummath_201801_07</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5642_jhummath_201801_07</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-b86adc058965e0d27c1452fa37367c8a2aa7c1c6a94f08756effd227431d07723</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWGpfwFVeYMYkM_mZlZRitVpx0-oy3GZumGnnR5Ip0rd3pAqezTkcDpfLR8gtZ6lUubjbV8e2haFKBeOG8ZTpCzIRXBaJ4dxc_svXZBbjno2SsuBMTcjzRwUDfYUDRgp0U2EfTrT3dNX5uqsHjHULTaTbiP7Y3NM5fa_xi-5O9KXBuqPQlXQZALsDNjfkyo9bnP36lGyXD5vFU7J-e1wt5uvECcGHZGcUlI5JUyiJrBTa8VwKD5nOlHYGBMBYOQVF7pnRUqH3pRA6z3jJtBbZlIjzXRf6GAN6-xnGL8PJcmZ_gNg_IPYMxDKdfQMBNVSq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>What Makes a Theory of Infinitesimals Useful? A View by Klein and Fraenkel</title><source>Freely Accessible Journals</source><creator>Kanovei, Vladimir ; Katz, Karin ; Katz, Mikhail ; Mormann, Thomas</creator><creatorcontrib>Kanovei, Vladimir ; Katz, Karin ; Katz, Mikhail ; Mormann, Thomas</creatorcontrib><identifier>ISSN: 2159-8118</identifier><identifier>EISSN: 2159-8118</identifier><identifier>DOI: 10.5642/jhummath.201801.07</identifier><language>eng</language><ispartof>Journal of humanistic mathematics, 2018-01, Vol.8 (1), p.108-119</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-b86adc058965e0d27c1452fa37367c8a2aa7c1c6a94f08756effd227431d07723</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kanovei, Vladimir</creatorcontrib><creatorcontrib>Katz, Karin</creatorcontrib><creatorcontrib>Katz, Mikhail</creatorcontrib><creatorcontrib>Mormann, Thomas</creatorcontrib><title>What Makes a Theory of Infinitesimals Useful? A View by Klein and Fraenkel</title><title>Journal of humanistic mathematics</title><issn>2159-8118</issn><issn>2159-8118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KAzEUhYMoWGpfwFVeYMYkM_mZlZRitVpx0-oy3GZumGnnR5Ip0rd3pAqezTkcDpfLR8gtZ6lUubjbV8e2haFKBeOG8ZTpCzIRXBaJ4dxc_svXZBbjno2SsuBMTcjzRwUDfYUDRgp0U2EfTrT3dNX5uqsHjHULTaTbiP7Y3NM5fa_xi-5O9KXBuqPQlXQZALsDNjfkyo9bnP36lGyXD5vFU7J-e1wt5uvECcGHZGcUlI5JUyiJrBTa8VwKD5nOlHYGBMBYOQVF7pnRUqH3pRA6z3jJtBbZlIjzXRf6GAN6-xnGL8PJcmZ_gNg_IPYMxDKdfQMBNVSq</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Kanovei, Vladimir</creator><creator>Katz, Karin</creator><creator>Katz, Mikhail</creator><creator>Mormann, Thomas</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201801</creationdate><title>What Makes a Theory of Infinitesimals Useful? A View by Klein and Fraenkel</title><author>Kanovei, Vladimir ; Katz, Karin ; Katz, Mikhail ; Mormann, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-b86adc058965e0d27c1452fa37367c8a2aa7c1c6a94f08756effd227431d07723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanovei, Vladimir</creatorcontrib><creatorcontrib>Katz, Karin</creatorcontrib><creatorcontrib>Katz, Mikhail</creatorcontrib><creatorcontrib>Mormann, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of humanistic mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanovei, Vladimir</au><au>Katz, Karin</au><au>Katz, Mikhail</au><au>Mormann, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What Makes a Theory of Infinitesimals Useful? A View by Klein and Fraenkel</atitle><jtitle>Journal of humanistic mathematics</jtitle><date>2018-01</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>108</spage><epage>119</epage><pages>108-119</pages><issn>2159-8118</issn><eissn>2159-8118</eissn><doi>10.5642/jhummath.201801.07</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2159-8118
ispartof Journal of humanistic mathematics, 2018-01, Vol.8 (1), p.108-119
issn 2159-8118
2159-8118
language eng
recordid cdi_crossref_primary_10_5642_jhummath_201801_07
source Freely Accessible Journals
title What Makes a Theory of Infinitesimals Useful? A View by Klein and Fraenkel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20Makes%20a%20Theory%20of%20Infinitesimals%20Useful?%20A%20View%20by%20Klein%20and%20Fraenkel&rft.jtitle=Journal%20of%20humanistic%20mathematics&rft.au=Kanovei,%20Vladimir&rft.date=2018-01&rft.volume=8&rft.issue=1&rft.spage=108&rft.epage=119&rft.pages=108-119&rft.issn=2159-8118&rft.eissn=2159-8118&rft_id=info:doi/10.5642/jhummath.201801.07&rft_dat=%3Ccrossref%3E10_5642_jhummath_201801_07%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-b86adc058965e0d27c1452fa37367c8a2aa7c1c6a94f08756effd227431d07723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true