Loading…
OPTIMAL DESIGNS FOR TWO-PARAMETER NONLINEAR MODELS WITH APPLICATION TO SURVIVAL MODELS
Censoring occurs in many industrial or biomedical ‘time to event’ experiments. Finding efficient designs for such experiments can be problematic since the statistical models involved are usually nonlinear, making the optimal choice of design parameter dependent. We provide analytical characterisatio...
Saved in:
Published in: | Statistica Sinica 2014-01, Vol.24 (1), p.415-428 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-950e47655bca01ec62593b7bf7224092df5dc2dcf1ee33829d565cc3cec077053 |
---|---|
cites | |
container_end_page | 428 |
container_issue | 1 |
container_start_page | 415 |
container_title | Statistica Sinica |
container_volume | 24 |
creator | Konstantinou, Maria Biedermann, Stefanie Kimber, Alan |
description | Censoring occurs in many industrial or biomedical ‘time to event’ experiments. Finding efficient designs for such experiments can be problematic since the statistical models involved are usually nonlinear, making the optimal choice of design parameter dependent. We provide analytical characterisations of locallyD- andc-optimal designs for a class of models, thus reducing the numerical effort for design search substantially. We also investigate standadised maximinD- andc-optimal designs. We illustrate our results using the natural proportional hazards parameterisation of the exponential regression model. Different censoring mechanisms are incorporated and the robustness of designs against parameter misspecification is assessed. |
doi_str_mv | 10.5705/ss.2011.271 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5705_ss_2011_271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26432550</jstor_id><sourcerecordid>26432550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-950e47655bca01ec62593b7bf7224092df5dc2dcf1ee33829d565cc3cec077053</originalsourceid><addsrcrecordid>eNo9kMFrwjAUxsPYYOI87TzIfdS9JH2NORatGqhNaaMei01TcGw4Gi_779fh2Ol7h9_74PsR8sxgjhLwLYQ5B8bmXLI7MmFKJdECQd6PNzAZQQz4SGYhnFsABcgWICbkYEqrd2lOV1mtN0VN16ai9miiMq3SXWazihamyHWRpRXdmVWW1_So7ZamZZnrZWq1Kag1tN5XB30Ye27ME3noTx_Bz_5ySvbrzC63UW4241ceOa74NVIIPpYJYutOwLxLOCrRyraXnMegeNdj53jneua9EAuuOkzQOeG8AzluFlPyeut1wyWEwffN13D-PA3fDYPm10oTQvNrpRmtjPTLjX4P18vwj_IkFhwRxA-SUlb_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>OPTIMAL DESIGNS FOR TWO-PARAMETER NONLINEAR MODELS WITH APPLICATION TO SURVIVAL MODELS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Konstantinou, Maria ; Biedermann, Stefanie ; Kimber, Alan</creator><creatorcontrib>Konstantinou, Maria ; Biedermann, Stefanie ; Kimber, Alan</creatorcontrib><description>Censoring occurs in many industrial or biomedical ‘time to event’ experiments. Finding efficient designs for such experiments can be problematic since the statistical models involved are usually nonlinear, making the optimal choice of design parameter dependent. We provide analytical characterisations of locallyD- andc-optimal designs for a class of models, thus reducing the numerical effort for design search substantially. We also investigate standadised maximinD- andc-optimal designs. We illustrate our results using the natural proportional hazards parameterisation of the exponential regression model. Different censoring mechanisms are incorporated and the robustness of designs against parameter misspecification is assessed.</description><identifier>ISSN: 1017-0405</identifier><identifier>EISSN: 1996-8507</identifier><identifier>DOI: 10.5705/ss.2011.271</identifier><language>eng</language><publisher>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</publisher><subject>Censored data ; Censorship ; Design analysis ; Experiment design ; Fisher information ; Mathematical vectors ; Maximin ; Parametric models ; Regression analysis ; Research universities</subject><ispartof>Statistica Sinica, 2014-01, Vol.24 (1), p.415-428</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-950e47655bca01ec62593b7bf7224092df5dc2dcf1ee33829d565cc3cec077053</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26432550$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26432550$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Konstantinou, Maria</creatorcontrib><creatorcontrib>Biedermann, Stefanie</creatorcontrib><creatorcontrib>Kimber, Alan</creatorcontrib><title>OPTIMAL DESIGNS FOR TWO-PARAMETER NONLINEAR MODELS WITH APPLICATION TO SURVIVAL MODELS</title><title>Statistica Sinica</title><description>Censoring occurs in many industrial or biomedical ‘time to event’ experiments. Finding efficient designs for such experiments can be problematic since the statistical models involved are usually nonlinear, making the optimal choice of design parameter dependent. We provide analytical characterisations of locallyD- andc-optimal designs for a class of models, thus reducing the numerical effort for design search substantially. We also investigate standadised maximinD- andc-optimal designs. We illustrate our results using the natural proportional hazards parameterisation of the exponential regression model. Different censoring mechanisms are incorporated and the robustness of designs against parameter misspecification is assessed.</description><subject>Censored data</subject><subject>Censorship</subject><subject>Design analysis</subject><subject>Experiment design</subject><subject>Fisher information</subject><subject>Mathematical vectors</subject><subject>Maximin</subject><subject>Parametric models</subject><subject>Regression analysis</subject><subject>Research universities</subject><issn>1017-0405</issn><issn>1996-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kMFrwjAUxsPYYOI87TzIfdS9JH2NORatGqhNaaMei01TcGw4Gi_779fh2Ol7h9_74PsR8sxgjhLwLYQ5B8bmXLI7MmFKJdECQd6PNzAZQQz4SGYhnFsABcgWICbkYEqrd2lOV1mtN0VN16ai9miiMq3SXWazihamyHWRpRXdmVWW1_So7ZamZZnrZWq1Kag1tN5XB30Ye27ME3noTx_Bz_5ySvbrzC63UW4241ceOa74NVIIPpYJYutOwLxLOCrRyraXnMegeNdj53jneua9EAuuOkzQOeG8AzluFlPyeut1wyWEwffN13D-PA3fDYPm10oTQvNrpRmtjPTLjX4P18vwj_IkFhwRxA-SUlb_</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Konstantinou, Maria</creator><creator>Biedermann, Stefanie</creator><creator>Kimber, Alan</creator><general>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140101</creationdate><title>OPTIMAL DESIGNS FOR TWO-PARAMETER NONLINEAR MODELS WITH APPLICATION TO SURVIVAL MODELS</title><author>Konstantinou, Maria ; Biedermann, Stefanie ; Kimber, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-950e47655bca01ec62593b7bf7224092df5dc2dcf1ee33829d565cc3cec077053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Censored data</topic><topic>Censorship</topic><topic>Design analysis</topic><topic>Experiment design</topic><topic>Fisher information</topic><topic>Mathematical vectors</topic><topic>Maximin</topic><topic>Parametric models</topic><topic>Regression analysis</topic><topic>Research universities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konstantinou, Maria</creatorcontrib><creatorcontrib>Biedermann, Stefanie</creatorcontrib><creatorcontrib>Kimber, Alan</creatorcontrib><collection>CrossRef</collection><jtitle>Statistica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konstantinou, Maria</au><au>Biedermann, Stefanie</au><au>Kimber, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPTIMAL DESIGNS FOR TWO-PARAMETER NONLINEAR MODELS WITH APPLICATION TO SURVIVAL MODELS</atitle><jtitle>Statistica Sinica</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>24</volume><issue>1</issue><spage>415</spage><epage>428</epage><pages>415-428</pages><issn>1017-0405</issn><eissn>1996-8507</eissn><abstract>Censoring occurs in many industrial or biomedical ‘time to event’ experiments. Finding efficient designs for such experiments can be problematic since the statistical models involved are usually nonlinear, making the optimal choice of design parameter dependent. We provide analytical characterisations of locallyD- andc-optimal designs for a class of models, thus reducing the numerical effort for design search substantially. We also investigate standadised maximinD- andc-optimal designs. We illustrate our results using the natural proportional hazards parameterisation of the exponential regression model. Different censoring mechanisms are incorporated and the robustness of designs against parameter misspecification is assessed.</abstract><pub>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</pub><doi>10.5705/ss.2011.271</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-0405 |
ispartof | Statistica Sinica, 2014-01, Vol.24 (1), p.415-428 |
issn | 1017-0405 1996-8507 |
language | eng |
recordid | cdi_crossref_primary_10_5705_ss_2011_271 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Censored data Censorship Design analysis Experiment design Fisher information Mathematical vectors Maximin Parametric models Regression analysis Research universities |
title | OPTIMAL DESIGNS FOR TWO-PARAMETER NONLINEAR MODELS WITH APPLICATION TO SURVIVAL MODELS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPTIMAL%20DESIGNS%20FOR%20TWO-PARAMETER%20NONLINEAR%20MODELS%20WITH%20APPLICATION%20TO%20SURVIVAL%20MODELS&rft.jtitle=Statistica%20Sinica&rft.au=Konstantinou,%20Maria&rft.date=2014-01-01&rft.volume=24&rft.issue=1&rft.spage=415&rft.epage=428&rft.pages=415-428&rft.issn=1017-0405&rft.eissn=1996-8507&rft_id=info:doi/10.5705/ss.2011.271&rft_dat=%3Cjstor_cross%3E26432550%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-950e47655bca01ec62593b7bf7224092df5dc2dcf1ee33829d565cc3cec077053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26432550&rfr_iscdi=true |