Loading…

OPTIMAL DESIGNS FOR TWO-PARAMETER NONLINEAR MODELS WITH APPLICATION TO SURVIVAL MODELS

Censoring occurs in many industrial or biomedical ‘time to event’ experiments. Finding efficient designs for such experiments can be problematic since the statistical models involved are usually nonlinear, making the optimal choice of design parameter dependent. We provide analytical characterisatio...

Full description

Saved in:
Bibliographic Details
Published in:Statistica Sinica 2014-01, Vol.24 (1), p.415-428
Main Authors: Konstantinou, Maria, Biedermann, Stefanie, Kimber, Alan
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-950e47655bca01ec62593b7bf7224092df5dc2dcf1ee33829d565cc3cec077053
cites
container_end_page 428
container_issue 1
container_start_page 415
container_title Statistica Sinica
container_volume 24
creator Konstantinou, Maria
Biedermann, Stefanie
Kimber, Alan
description Censoring occurs in many industrial or biomedical ‘time to event’ experiments. Finding efficient designs for such experiments can be problematic since the statistical models involved are usually nonlinear, making the optimal choice of design parameter dependent. We provide analytical characterisations of locallyD- andc-optimal designs for a class of models, thus reducing the numerical effort for design search substantially. We also investigate standadised maximinD- andc-optimal designs. We illustrate our results using the natural proportional hazards parameterisation of the exponential regression model. Different censoring mechanisms are incorporated and the robustness of designs against parameter misspecification is assessed.
doi_str_mv 10.5705/ss.2011.271
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5705_ss_2011_271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26432550</jstor_id><sourcerecordid>26432550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-950e47655bca01ec62593b7bf7224092df5dc2dcf1ee33829d565cc3cec077053</originalsourceid><addsrcrecordid>eNo9kMFrwjAUxsPYYOI87TzIfdS9JH2NORatGqhNaaMei01TcGw4Gi_779fh2Ol7h9_74PsR8sxgjhLwLYQ5B8bmXLI7MmFKJdECQd6PNzAZQQz4SGYhnFsABcgWICbkYEqrd2lOV1mtN0VN16ai9miiMq3SXWazihamyHWRpRXdmVWW1_So7ZamZZnrZWq1Kag1tN5XB30Ye27ME3noTx_Bz_5ySvbrzC63UW4241ceOa74NVIIPpYJYutOwLxLOCrRyraXnMegeNdj53jneua9EAuuOkzQOeG8AzluFlPyeut1wyWEwffN13D-PA3fDYPm10oTQvNrpRmtjPTLjX4P18vwj_IkFhwRxA-SUlb_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>OPTIMAL DESIGNS FOR TWO-PARAMETER NONLINEAR MODELS WITH APPLICATION TO SURVIVAL MODELS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Konstantinou, Maria ; Biedermann, Stefanie ; Kimber, Alan</creator><creatorcontrib>Konstantinou, Maria ; Biedermann, Stefanie ; Kimber, Alan</creatorcontrib><description>Censoring occurs in many industrial or biomedical ‘time to event’ experiments. Finding efficient designs for such experiments can be problematic since the statistical models involved are usually nonlinear, making the optimal choice of design parameter dependent. We provide analytical characterisations of locallyD- andc-optimal designs for a class of models, thus reducing the numerical effort for design search substantially. We also investigate standadised maximinD- andc-optimal designs. We illustrate our results using the natural proportional hazards parameterisation of the exponential regression model. Different censoring mechanisms are incorporated and the robustness of designs against parameter misspecification is assessed.</description><identifier>ISSN: 1017-0405</identifier><identifier>EISSN: 1996-8507</identifier><identifier>DOI: 10.5705/ss.2011.271</identifier><language>eng</language><publisher>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</publisher><subject>Censored data ; Censorship ; Design analysis ; Experiment design ; Fisher information ; Mathematical vectors ; Maximin ; Parametric models ; Regression analysis ; Research universities</subject><ispartof>Statistica Sinica, 2014-01, Vol.24 (1), p.415-428</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-950e47655bca01ec62593b7bf7224092df5dc2dcf1ee33829d565cc3cec077053</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26432550$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26432550$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Konstantinou, Maria</creatorcontrib><creatorcontrib>Biedermann, Stefanie</creatorcontrib><creatorcontrib>Kimber, Alan</creatorcontrib><title>OPTIMAL DESIGNS FOR TWO-PARAMETER NONLINEAR MODELS WITH APPLICATION TO SURVIVAL MODELS</title><title>Statistica Sinica</title><description>Censoring occurs in many industrial or biomedical ‘time to event’ experiments. Finding efficient designs for such experiments can be problematic since the statistical models involved are usually nonlinear, making the optimal choice of design parameter dependent. We provide analytical characterisations of locallyD- andc-optimal designs for a class of models, thus reducing the numerical effort for design search substantially. We also investigate standadised maximinD- andc-optimal designs. We illustrate our results using the natural proportional hazards parameterisation of the exponential regression model. Different censoring mechanisms are incorporated and the robustness of designs against parameter misspecification is assessed.</description><subject>Censored data</subject><subject>Censorship</subject><subject>Design analysis</subject><subject>Experiment design</subject><subject>Fisher information</subject><subject>Mathematical vectors</subject><subject>Maximin</subject><subject>Parametric models</subject><subject>Regression analysis</subject><subject>Research universities</subject><issn>1017-0405</issn><issn>1996-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kMFrwjAUxsPYYOI87TzIfdS9JH2NORatGqhNaaMei01TcGw4Gi_779fh2Ol7h9_74PsR8sxgjhLwLYQ5B8bmXLI7MmFKJdECQd6PNzAZQQz4SGYhnFsABcgWICbkYEqrd2lOV1mtN0VN16ai9miiMq3SXWazihamyHWRpRXdmVWW1_So7ZamZZnrZWq1Kag1tN5XB30Ye27ME3noTx_Bz_5ySvbrzC63UW4241ceOa74NVIIPpYJYutOwLxLOCrRyraXnMegeNdj53jneua9EAuuOkzQOeG8AzluFlPyeut1wyWEwffN13D-PA3fDYPm10oTQvNrpRmtjPTLjX4P18vwj_IkFhwRxA-SUlb_</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Konstantinou, Maria</creator><creator>Biedermann, Stefanie</creator><creator>Kimber, Alan</creator><general>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140101</creationdate><title>OPTIMAL DESIGNS FOR TWO-PARAMETER NONLINEAR MODELS WITH APPLICATION TO SURVIVAL MODELS</title><author>Konstantinou, Maria ; Biedermann, Stefanie ; Kimber, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-950e47655bca01ec62593b7bf7224092df5dc2dcf1ee33829d565cc3cec077053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Censored data</topic><topic>Censorship</topic><topic>Design analysis</topic><topic>Experiment design</topic><topic>Fisher information</topic><topic>Mathematical vectors</topic><topic>Maximin</topic><topic>Parametric models</topic><topic>Regression analysis</topic><topic>Research universities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konstantinou, Maria</creatorcontrib><creatorcontrib>Biedermann, Stefanie</creatorcontrib><creatorcontrib>Kimber, Alan</creatorcontrib><collection>CrossRef</collection><jtitle>Statistica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konstantinou, Maria</au><au>Biedermann, Stefanie</au><au>Kimber, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPTIMAL DESIGNS FOR TWO-PARAMETER NONLINEAR MODELS WITH APPLICATION TO SURVIVAL MODELS</atitle><jtitle>Statistica Sinica</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>24</volume><issue>1</issue><spage>415</spage><epage>428</epage><pages>415-428</pages><issn>1017-0405</issn><eissn>1996-8507</eissn><abstract>Censoring occurs in many industrial or biomedical ‘time to event’ experiments. Finding efficient designs for such experiments can be problematic since the statistical models involved are usually nonlinear, making the optimal choice of design parameter dependent. We provide analytical characterisations of locallyD- andc-optimal designs for a class of models, thus reducing the numerical effort for design search substantially. We also investigate standadised maximinD- andc-optimal designs. We illustrate our results using the natural proportional hazards parameterisation of the exponential regression model. Different censoring mechanisms are incorporated and the robustness of designs against parameter misspecification is assessed.</abstract><pub>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</pub><doi>10.5705/ss.2011.271</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1017-0405
ispartof Statistica Sinica, 2014-01, Vol.24 (1), p.415-428
issn 1017-0405
1996-8507
language eng
recordid cdi_crossref_primary_10_5705_ss_2011_271
source JSTOR Archival Journals and Primary Sources Collection
subjects Censored data
Censorship
Design analysis
Experiment design
Fisher information
Mathematical vectors
Maximin
Parametric models
Regression analysis
Research universities
title OPTIMAL DESIGNS FOR TWO-PARAMETER NONLINEAR MODELS WITH APPLICATION TO SURVIVAL MODELS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPTIMAL%20DESIGNS%20FOR%20TWO-PARAMETER%20NONLINEAR%20MODELS%20WITH%20APPLICATION%20TO%20SURVIVAL%20MODELS&rft.jtitle=Statistica%20Sinica&rft.au=Konstantinou,%20Maria&rft.date=2014-01-01&rft.volume=24&rft.issue=1&rft.spage=415&rft.epage=428&rft.pages=415-428&rft.issn=1017-0405&rft.eissn=1996-8507&rft_id=info:doi/10.5705/ss.2011.271&rft_dat=%3Cjstor_cross%3E26432550%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-950e47655bca01ec62593b7bf7224092df5dc2dcf1ee33829d565cc3cec077053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26432550&rfr_iscdi=true