Loading…
OPTIMAL DESIGN WHEN OUTCOME VALUES ARE NOT MISSING AT RANDOM
The presence of missing values complicates statistical analyses. In design of experiments, missing values are particularly problematic when constructing optimal designs, as it is not known which values are missing at the design stage. When data are missing at random it is possible to incorporate thi...
Saved in:
Published in: | Statistica Sinica 2018-10, Vol.28 (4), p.1821-1838 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c301t-eff2dd898ecc600b398dab2f62319a308241eee50ff5ce3a0f2b035ee94eaf703 |
---|---|
cites | |
container_end_page | 1838 |
container_issue | 4 |
container_start_page | 1821 |
container_title | Statistica Sinica |
container_volume | 28 |
creator | Lee, Kim May Mitra, Robin Biedermann, Stefanie |
description | The presence of missing values complicates statistical analyses. In design of experiments, missing values are particularly problematic when constructing optimal designs, as it is not known which values are missing at the design stage. When data are missing at random it is possible to incorporate this information into the optimality criterion that is used to find designs; Imhof, Song and Wong (2002) develop such a framework. However, when data are not missing at random this framework can lead to inefficient designs. We investigate and address the specific challenges that not missing at random values present when finding optimal designs for linear regression models. We show that the optimality criteria depend on model parameters that traditionally do not affect the design, such as regression coefficients and the residual variance. We also develop a framework that improves efficiency of designs over those found when values are missing at random. |
doi_str_mv | 10.5705/ss.202016.0526 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5705_ss_202016_0526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26511190</jstor_id><sourcerecordid>26511190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-eff2dd898ecc600b398dab2f62319a308241eee50ff5ce3a0f2b035ee94eaf703</originalsourceid><addsrcrecordid>eNo9j81Kw0AYRQdRsNRu3QnzAonfN5NJZsBNSMc0kB9pEl2G_MxARalkuvHtbUlxde_inguHkEcEX0Qgnp3zGTDA0AfBwhuyQqVCTwqIbs8dMPIgAHFPNs4dBgAFAiXwFXmp3pqsiHO61XWWlvRjp0tatU1SFZq-x3mraxrvNS2rhhZZXWdlSuOG7uNyWxUP5M72X85srrkm7atukp2XV2mWxLk3csCTZ6xl0ySVNOMYAgxcyakfmA0ZR9VzkCxAY4wAa8VoeA-WDcCFMSowvY2Ar4m__I7z0bnZ2O5nPnz382-H0F30O-e6Rb-76J-BpwX4dKfj_L9moUBEBfwP6cxRdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>OPTIMAL DESIGN WHEN OUTCOME VALUES ARE NOT MISSING AT RANDOM</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Lee, Kim May ; Mitra, Robin ; Biedermann, Stefanie</creator><creatorcontrib>Lee, Kim May ; Mitra, Robin ; Biedermann, Stefanie</creatorcontrib><description>The presence of missing values complicates statistical analyses. In design of experiments, missing values are particularly problematic when constructing optimal designs, as it is not known which values are missing at the design stage. When data are missing at random it is possible to incorporate this information into the optimality criterion that is used to find designs; Imhof, Song and Wong (2002) develop such a framework. However, when data are not missing at random this framework can lead to inefficient designs. We investigate and address the specific challenges that not missing at random values present when finding optimal designs for linear regression models. We show that the optimality criteria depend on model parameters that traditionally do not affect the design, such as regression coefficients and the residual variance. We also develop a framework that improves efficiency of designs over those found when values are missing at random.</description><identifier>ISSN: 1017-0405</identifier><identifier>EISSN: 1996-8507</identifier><identifier>DOI: 10.5705/ss.202016.0526</identifier><language>eng</language><publisher>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</publisher><ispartof>Statistica Sinica, 2018-10, Vol.28 (4), p.1821-1838</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-eff2dd898ecc600b398dab2f62319a308241eee50ff5ce3a0f2b035ee94eaf703</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26511190$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26511190$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,58217,58450</link.rule.ids></links><search><creatorcontrib>Lee, Kim May</creatorcontrib><creatorcontrib>Mitra, Robin</creatorcontrib><creatorcontrib>Biedermann, Stefanie</creatorcontrib><title>OPTIMAL DESIGN WHEN OUTCOME VALUES ARE NOT MISSING AT RANDOM</title><title>Statistica Sinica</title><description>The presence of missing values complicates statistical analyses. In design of experiments, missing values are particularly problematic when constructing optimal designs, as it is not known which values are missing at the design stage. When data are missing at random it is possible to incorporate this information into the optimality criterion that is used to find designs; Imhof, Song and Wong (2002) develop such a framework. However, when data are not missing at random this framework can lead to inefficient designs. We investigate and address the specific challenges that not missing at random values present when finding optimal designs for linear regression models. We show that the optimality criteria depend on model parameters that traditionally do not affect the design, such as regression coefficients and the residual variance. We also develop a framework that improves efficiency of designs over those found when values are missing at random.</description><issn>1017-0405</issn><issn>1996-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9j81Kw0AYRQdRsNRu3QnzAonfN5NJZsBNSMc0kB9pEl2G_MxARalkuvHtbUlxde_inguHkEcEX0Qgnp3zGTDA0AfBwhuyQqVCTwqIbs8dMPIgAHFPNs4dBgAFAiXwFXmp3pqsiHO61XWWlvRjp0tatU1SFZq-x3mraxrvNS2rhhZZXWdlSuOG7uNyWxUP5M72X85srrkm7atukp2XV2mWxLk3csCTZ6xl0ySVNOMYAgxcyakfmA0ZR9VzkCxAY4wAa8VoeA-WDcCFMSowvY2Ar4m__I7z0bnZ2O5nPnz382-H0F30O-e6Rb-76J-BpwX4dKfj_L9moUBEBfwP6cxRdg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Lee, Kim May</creator><creator>Mitra, Robin</creator><creator>Biedermann, Stefanie</creator><general>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181001</creationdate><title>OPTIMAL DESIGN WHEN OUTCOME VALUES ARE NOT MISSING AT RANDOM</title><author>Lee, Kim May ; Mitra, Robin ; Biedermann, Stefanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-eff2dd898ecc600b398dab2f62319a308241eee50ff5ce3a0f2b035ee94eaf703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kim May</creatorcontrib><creatorcontrib>Mitra, Robin</creatorcontrib><creatorcontrib>Biedermann, Stefanie</creatorcontrib><collection>CrossRef</collection><jtitle>Statistica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kim May</au><au>Mitra, Robin</au><au>Biedermann, Stefanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPTIMAL DESIGN WHEN OUTCOME VALUES ARE NOT MISSING AT RANDOM</atitle><jtitle>Statistica Sinica</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>28</volume><issue>4</issue><spage>1821</spage><epage>1838</epage><pages>1821-1838</pages><issn>1017-0405</issn><eissn>1996-8507</eissn><abstract>The presence of missing values complicates statistical analyses. In design of experiments, missing values are particularly problematic when constructing optimal designs, as it is not known which values are missing at the design stage. When data are missing at random it is possible to incorporate this information into the optimality criterion that is used to find designs; Imhof, Song and Wong (2002) develop such a framework. However, when data are not missing at random this framework can lead to inefficient designs. We investigate and address the specific challenges that not missing at random values present when finding optimal designs for linear regression models. We show that the optimality criteria depend on model parameters that traditionally do not affect the design, such as regression coefficients and the residual variance. We also develop a framework that improves efficiency of designs over those found when values are missing at random.</abstract><pub>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</pub><doi>10.5705/ss.202016.0526</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-0405 |
ispartof | Statistica Sinica, 2018-10, Vol.28 (4), p.1821-1838 |
issn | 1017-0405 1996-8507 |
language | eng |
recordid | cdi_crossref_primary_10_5705_ss_202016_0526 |
source | JSTOR Archival Journals and Primary Sources Collection |
title | OPTIMAL DESIGN WHEN OUTCOME VALUES ARE NOT MISSING AT RANDOM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPTIMAL%20DESIGN%20WHEN%20OUTCOME%20VALUES%20ARE%20NOT%20MISSING%20AT%20RANDOM&rft.jtitle=Statistica%20Sinica&rft.au=Lee,%20Kim%20May&rft.date=2018-10-01&rft.volume=28&rft.issue=4&rft.spage=1821&rft.epage=1838&rft.pages=1821-1838&rft.issn=1017-0405&rft.eissn=1996-8507&rft_id=info:doi/10.5705/ss.202016.0526&rft_dat=%3Cjstor_cross%3E26511190%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-eff2dd898ecc600b398dab2f62319a308241eee50ff5ce3a0f2b035ee94eaf703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26511190&rfr_iscdi=true |