Loading…
AC Impedance Analysis of the Degeneration and Recovery of Argyrodite Sulfide-Based Solid Electrolytes under Dry-Room-Simulated Condition
Toward the development of all-solid-state batteries with enhanced performance, this study describes the investigation of the degeneration mechanism under low-humid conditions of an argyrodite-type sulfide-based solid electrolyte. The degeneration of the electrolyte with moisture occurs even under th...
Saved in:
Published in: | Denki kagaku oyobi kōgyō butsuri kagaku 2022/03/29, Vol.90(3), pp.037012-037012 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Toward the development of all-solid-state batteries with enhanced performance, this study describes the investigation of the degeneration mechanism under low-humid conditions of an argyrodite-type sulfide-based solid electrolyte. The degeneration of the electrolyte with moisture occurs even under the condition of super-low humidity in a dry room with a dew point (dp) as low as −50 °Cdp. Formation of hydrogen sulfide is detected when the electrolyte is exposed to dry air with −20 °Cdp. The results of impedance measurements suggest that the grain surface of the electrolyte is degenerated with moisture, resulting in a decrease in the lithium-ion conductivity at the grain boundary. The degenerated electrolyte surface can be partially recovered by heating at 170 °C in vacuo, although a small degeneration in bulk may occur in the heating process. |
---|---|
ISSN: | 1344-3542 2186-2451 |
DOI: | 10.5796/electrochemistry.22-00013 |