Loading…

Low Temperature Synthesis of High Crystalline Spinel Oxides: LiNi1/2Mn3/2O4

The crystal growth process of LiNi1/2Mn3/2O4 was investigated and the octahedral shaped LiNi1/2Mn3/2O4 was successfully synthesized by a low temperature synthesis. The morphology change was accelerated by the spinel-rocksalt phase transformation caused by the oxygen loss. After re-oxidation, high cr...

Full description

Saved in:
Bibliographic Details
Published in:Denki kagaku oyobi kōgyō butsuri kagaku 2015/10/05, Vol.83(10), pp.870-873
Main Authors: MATSUDA, Yasuaki, MATSUI, Masaki, SANDA, Takahiro, TAKASHI, Yusuke, IMANISHI, Nobuyuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The crystal growth process of LiNi1/2Mn3/2O4 was investigated and the octahedral shaped LiNi1/2Mn3/2O4 was successfully synthesized by a low temperature synthesis. The morphology change was accelerated by the spinel-rocksalt phase transformation caused by the oxygen loss. After re-oxidation, high crystalline LiNi1/2Mn3/2O4 with octahedral morphology was obtained. High crystalline LiNi1/2Mn3/2O4 with the particle size of 1–3 µm was obtained by the low temperature synthesis controlling the oxygen partial pressure. High crystalline LiNi1/2Mn3/2O4 crystallized at 850°C exhibited an initial charge capacity of 145 mAh g−1 and an initial discharge capacity of 137 mAh g−1 with a plateau at 4.7 V, and 90% of cycle retention after 100 cycles at 60°C. Microparticulation of high crystalline LiNi1/2Mn3/2O4 enhanced the discharge capacity.
ISSN:1344-3542
2186-2451
DOI:10.5796/electrochemistry.83.870