Loading…
Assessing the Impacts of Mutations to the Structure of COVID-19 Spike Protein via Sequential Monte Carlo
Proteins play a key role in facilitating the infectiousness of the 2019 novel coronavirus. A specific spike protein enables this virus to bind to human cells, and a thorough understanding of its 3-dimensional structure is therefore critical for developing effective therapeutic interventions. However...
Saved in:
Published in: | Journal of Data Science 2021-01, Vol.18 (3), p.511-525 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Proteins play a key role in facilitating the infectiousness of the 2019 novel coronavirus. A specific spike protein enables this virus to bind to human cells, and a thorough understanding of its 3-dimensional structure is therefore critical for developing effective therapeutic interventions. However, its structure may continue to evolve over time as a result of mutations. In this paper, we use a data science perspective to study the potential structural impacts due to ongoing mutations in its amino acid sequence. To do so, we identify a key segment of the protein and apply a sequential Monte Carlo sampling method to detect possible changes to the space of low-energy conformations for different amino acid sequences. Such computational approaches can further our understanding of this protein structure and complement laboratory efforts. |
---|---|
ISSN: | 1683-8602 1680-743X 1683-8602 |
DOI: | 10.6339/JDS.202007_18(3).0017 |